Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Biomass Power Plants Could Help Rural Economies, Stabilize National Power Grid, MU Study Finds

11.03.2014

The views and opinions expressed in this “for expert comment” release are based on research and/or opinions of the researcher(s) and/or faculty member(s) and do not reflect the University’s official stance.

As energy costs rise, more Americans are turning to bioenergy to provide power to their homes and workplaces. Bioenergy is renewable energy made from organic sources, such as biomass. Technology has advanced enough that biomass power plants small enough to fit on a farm can be built at relatively low costs.


Tom Johnson is the Frank Miller Professor of Agricultural and Applied Economics in the College of Agriculture, Food, and Natural Resources and professor in the Truman School of Public Affairs, says that improving the ability of farmers and other rural citizens to create their own bioenergy can help rural economies.

Now, University of Missouri researchers have found that creating a bioenergy grid with these small plants could benefit people in rural areas of the country as well as provide relief to an overworked national power grid.

“Transporting power through power lines to remote, rural areas is very inefficient and can be expensive for farmers and other rural citizens,” said Tom Johnson, the Frank Miller Professor of Agricultural and Applied Economics in the MU College of Agriculture, Food, and Natural Resources and professor in the MU Truman School of Public Affairs.

“Farmers already have access to a large amount of biomass material left over each year after harvests. If they had access to small biomass power plants, they could become close to self-sustaining in terms of power. If the grid was improved enough, they could even provide additional power to other people around the country, helping to stabilize the national power grid. This could help save rural citizens money and be a boon for rural economies.”

Johnson says that as citizens of rural areas become bioenergy producers, they will realize other advantages. First, local transportation costs are lower compared to regions that must import transportation fuels providing local businesses with an advantage over urban centers.

Second, major consumers of processed energy, such as some manufacturers and firms with large air conditioning needs, will find rural areas more attractive because of their lower prices for energy. Johnson says none of these benefits will be realized unless policymakers work with people from rural areas to provide funding to grow the infrastructure.

“This is unlikely to occur without clearly articulated goals coupled with strategic guidance from policy,” Johnson said. “We need an integration of policy and programs among community leaders, rural entrepreneurs and economic developers or practitioners who act as conduits between entrepreneurs and policy. In order to grow this bioeconomy, the goals of these actors need to be aligned.”

Johnson does warn that if this bioeconomy system is created, safeguards must be in place to protect the renewable resources, such as biomass. He also says mechanisms must be in place to ensure an equitable distribution of the rewards from investing; otherwise, local citizens risk becoming impoverished by the destruction of renewable resources and potential environmental degradation.

Johnson published this study in the journal, Biomass and Bioenergy.

Nathan Hurst | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: Biomass Economies Grid Plants Technology bioenergy biomass resources

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>