Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Biomass Power Plants Could Help Rural Economies, Stabilize National Power Grid, MU Study Finds

11.03.2014

The views and opinions expressed in this “for expert comment” release are based on research and/or opinions of the researcher(s) and/or faculty member(s) and do not reflect the University’s official stance.

As energy costs rise, more Americans are turning to bioenergy to provide power to their homes and workplaces. Bioenergy is renewable energy made from organic sources, such as biomass. Technology has advanced enough that biomass power plants small enough to fit on a farm can be built at relatively low costs.


Tom Johnson is the Frank Miller Professor of Agricultural and Applied Economics in the College of Agriculture, Food, and Natural Resources and professor in the Truman School of Public Affairs, says that improving the ability of farmers and other rural citizens to create their own bioenergy can help rural economies.

Now, University of Missouri researchers have found that creating a bioenergy grid with these small plants could benefit people in rural areas of the country as well as provide relief to an overworked national power grid.

“Transporting power through power lines to remote, rural areas is very inefficient and can be expensive for farmers and other rural citizens,” said Tom Johnson, the Frank Miller Professor of Agricultural and Applied Economics in the MU College of Agriculture, Food, and Natural Resources and professor in the MU Truman School of Public Affairs.

“Farmers already have access to a large amount of biomass material left over each year after harvests. If they had access to small biomass power plants, they could become close to self-sustaining in terms of power. If the grid was improved enough, they could even provide additional power to other people around the country, helping to stabilize the national power grid. This could help save rural citizens money and be a boon for rural economies.”

Johnson says that as citizens of rural areas become bioenergy producers, they will realize other advantages. First, local transportation costs are lower compared to regions that must import transportation fuels providing local businesses with an advantage over urban centers.

Second, major consumers of processed energy, such as some manufacturers and firms with large air conditioning needs, will find rural areas more attractive because of their lower prices for energy. Johnson says none of these benefits will be realized unless policymakers work with people from rural areas to provide funding to grow the infrastructure.

“This is unlikely to occur without clearly articulated goals coupled with strategic guidance from policy,” Johnson said. “We need an integration of policy and programs among community leaders, rural entrepreneurs and economic developers or practitioners who act as conduits between entrepreneurs and policy. In order to grow this bioeconomy, the goals of these actors need to be aligned.”

Johnson does warn that if this bioeconomy system is created, safeguards must be in place to protect the renewable resources, such as biomass. He also says mechanisms must be in place to ensure an equitable distribution of the rewards from investing; otherwise, local citizens risk becoming impoverished by the destruction of renewable resources and potential environmental degradation.

Johnson published this study in the journal, Biomass and Bioenergy.

Nathan Hurst | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: Biomass Economies Grid Plants Technology bioenergy biomass resources

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>