Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why the slow paced world could make it difficult to catch a ball..

BBSRC researchers at the University of Birmingham have uncovered new information about the way that we perceive fast moving, incoming objects - such as tennis or cricket balls.

The new research, published today (4 August 2008) in the Proceedings of the National Academy of Sciences (PNAS), studies why the human brain has difficulty perceiving fast moving objects coming from straight ahead; something that should be a key survival skill.

The research has implications for understanding how top-class sportspeople make decisions about playing a shot but could also be important for improving road safety and for the development of robotic vision systems.

The information that the brain uses to process moving objects and to estimate their likely trajectory - which can then be used to decide whether to move out of the way or how to play a shot or catch a ball - is biased by the generally slow moving world around us. Dr Andrew Welchman, a Biotechnology and Biological Sciences Research Council (BBSRC) David Phillips Fellow, has discovered that this bias affects the way we perceive and interpret objects approaching from dead ahead far more than objects moving side-to-side in our field of vision.

... more about:

Dr Welchman explains: "We may think we live in a fast moving, hectic world, but statistically our environment moves around us slowly. Apart from the odd speeding car, buildings, landscape and walls around us all move past us at slow and predictable speeds. Our brains are constantly building up a statistical picture of the world around and, based on experience, it is a statistically slow world.

"When an object moves quickly - be it a football, cricket ball or, for our ancestors, a spear - our brains have to interpret the movement rapidly and, because our brains draw on experience, it's often biased by what it already knows. The less certain we are about what we see, the more we are influenced by the brain's statistical assumptions, which means in some circumstances we get it wrong."

The human visual system can interpret sideways movement better than it can the movement of objects straight towards us, and this affects our judgments about objects coming our way. Working with colleagues at the Max Planck Institute in Tuebingen, Germany, Dr Welchman developed a mathematical model to show how the brain predicts the motion of an incoming object and tested this with experiments. His model shows that our previous experience of the world around us guides our perception more for objects that come straight towards us than when objects move sideways. The result of this is that approaching objects can look slower than they are and we can believe and object will miss us when actually due to hit us.

Dr Welchman said: "Although it is not surprising that sportsmen who practice a lot build up a better statistical picture in their minds about where a ball might go, it is surprising that what should be a vital survival skill is based on such a trial and error learning experience."

The research has serious applications beyond the world of sports. Motorists driving in poor visual conditions such as fog often drive too fast for the conditions because they judge speed inappropriately. The poor visual information produced by fog means the brain relies more on its assumption that the world moves slowly, so the car's motion is judged slower than it actually is.

Dr Welchman said: "The research also has important long term application to robotics and assistive technologies. Capitalising on nature's design is a good way of building artificial visual systems for robots - as humans get visual judgments right a lot more often than the best current robot systems. Further, knowing the situations in which humans get it wrong is a useful starting point for the design of assistive devices to help correct those errors before they have serious consequences."

| alfa
Further information:

Further reports about: BBSRC

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>