Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep: Spring cleaning for the brain?

03.04.2009
If you've ever been sleep-deprived, you know the feeling that your brain is full of wool.

Now, a study published in the April 3 edition of the journal Science has molecular and structural evidence of that woolly feeling — proteins that build up in the brains of sleep-deprived fruit flies and drop to lower levels in the brains of the well-rested. The proteins are located in the synapses, those specialized parts of neurons that allow brain cells to communicate with other neurons.

Sleep researchers at the University of Wisconsin-Madison School of Medicine and Public Health believe it is more evidence for their theory of "synaptic homeostasis." This is the idea that synapses grow stronger when we're awake as we learn and adapt to an ever-changing the environment, that sleep refreshes the brain by bringing synapses back to a lower level of strength. This is important because larger synapses consume a lot of energy, occupy more space and require more supplies, including the proteins examined in this study.

Sleep — by allowing synaptic downscaling — saves energy, space and material, and clears away unnecessary "noise" from the previous day, the researchers believe. The fresh brain is then ready to learn again in the morning.

The researchers — Giorgio Gilestro, Giulio Tononi and Chiara Cirelli, of the Center for Sleep and Consciousness — found that levels of proteins that carry messages in the synapses (or junctions) between neurons drop by 30 to 40 percent during sleep.

In the Science paper, three-dimensional photos using confocal microscopy show the brains of sleep-deprived flies filled with a synaptic protein called Bruchpilot (BRP), a component of the machinery that allows communication among neurons. In well-rested flies, levels of BRP and four other synaptic proteins drop back to low levels, providing evidence that sleep resets the brain to allow more growth and learning the next day.

"We know that sleep is necessary for our brain to function properly, to learn new things every day, and also, in some cases, to consolidate the memory of what we learned during the day," says Cirelli, associate professor of psychiatry. "During sleep, we think that most, if not all, synapses are downscaled: at the end of sleep, the strongest synapses shrink, while the weakest synapses may even disappear."

The confocal microscope views show this happening in all three major areas of the fruit-fly brain, which are known to be very plastic (involved in learning).

In a paper published last year, Tononi, Cirelli and their co-investigators found similar chemical changes in the synapses of rats' brains. They also showed that rats' brains have a stronger "evoked response" to electrical stimulation after being awake, and a weaker one after sleep. That finding provided more evidence, using electrophysiological rather than molecular techniques, consistent with the idea that synapses grow stronger during the day, then weaker during sleep.

Because sleep performs the same function in the brains of species as diverse as fruit flies and rats, Cirelli says it was likely conserved by evolution because it is so important to an animal's health and survival.

The Wisconsin laboratory has pioneered ways of studying sleep in different species, including fruit flies.

To keep the flies awake, they're put into a "fly agitator" that holds 10 plates, each containing 32 drowsy flies. A robot arm shakes the plates occasionally to keep the flies from dozing.

Flies were deprived of sleep for as long as 24 hours. Researchers then dissected their brains and measured the levels of four pre-synaptic proteins and one post-synaptic protein. All levels rose progressively during periods of wakefulness and fell after sleep. Other experiments confirmed that the changes in protein levels were not caused by exposure to light and darkness or by the stimulation itself, but by sleep and waking. They also used confocal microscopy and an antibody that specifically recognizes BRP to measure the expression of this protein in many fly-brain areas.

Higher levels of these synaptic proteins during waking may be evidence of random experiences that fill the brain every day and need to be dissipated to make room for the learning and memories that are truly significant.

"Much of what we learn in a day, we don't really need to remember," Cirelli says. "If you've used up all the space, you can't learn more before you clean out the junk that is filling up your brain."

Susan Lampert Smith | EurekAlert!
Further information:
http://www.uwhealth.org
http://www.news.wisc.edu/newsphotos/sleep-brains.html

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>