Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep deprivation linked to junk food cravings

07.08.2013
A sleepless night makes us more likely to reach for doughnuts or pizza than for whole grains and leafy green vegetables, suggests a new study from UC Berkeley that examines the brain regions that control food choices. The findings shed new light on the link between poor sleep and obesity.

Using functional magnetic resonance imaging (fMRI), UC Berkeley researchers scanned the brains of 23 healthy young adults, first after a normal night’s sleep and next, after a sleepless night.

They found impaired activity in the sleep-deprived brain’s frontal lobe, which governs complex decision-making, but increased activity in deeper brain centers that respond to rewards. Moreover, the participants favored unhealthy snack and junk foods when they were sleep deprived.

“What we have discovered is that high-level brain regions required for complex judgments and decisions become blunted by a lack of sleep, while more primal brain structures that control motivation and desire are amplified,” said Matthew Walker, a UC Berkeley professor of psychology and neuroscience and senior author of the study published today (Tuesday, Aug. 6) in the journal Nature Communications.

Moreover, he added, “high-calorie foods also became significantly more desirable when participants were sleep-deprived. This combination of altered brain activity and decision-making may help explain why people who sleep less also tend to be overweight or obese.”

Previous studies have linked poor sleep to greater appetites, particularly for sweet and salty foods, but the latest findings provide a specific brain mechanism explaining why food choices change for the worse following a sleepless night, Walker said.

“These results shed light on how the brain becomes impaired by sleep deprivation, leading to the selection of more unhealthy foods and, ultimately, higher rates of obesity,” said Stephanie Greer, a doctoral student in Walker’s Sleep and Neuroimaging Laboratory and lead author of the paper. Another co-author of the study is Andrea Goldstein, also a doctoral student in Walker’s lab.

In this newest study, researchers measured brain activity as participants viewed a series of 80 food images that ranged from high-to low-calorie and healthy and unhealthy, and rated their desire for each of the items. As an incentive, they were given the food they most craved after the MRI scan.

Food choices presented in the experiment ranged from fruits and vegetables, such as strawberries, apples and carrots, to high-calorie burgers, pizza and doughnuts. The latter are examples of the more popular choices following a sleepless night.

On a positive note, Walker said, the findings indicate that “getting enough sleep is one factor that can help promote weight control by priming the brain mechanisms governing appropriate food choices.”

Yasmin Anwar | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>