Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep consolidates memories for competing tasks

21.03.2013
Sleep plays an important role in the brain’s ability to consolidate learning when two new potentially competing tasks are learned in the same day, research at the University of Chicago demonstrates.
Other studies have shown that sleep consolidates learning for a new task. The new study, which measured starlings’ ability to recognize new songs, shows that learning a second task can undermine the performance of a previously learned task. But this study is the first to show that a good night’s sleep helps the brain retain both new memories.

Starlings provide an excellent model for studying memory because of fundamental biological similarities between avian and mammalian brains, scholars wrote in the paper, “Sleep Consolidation of Interfering Auditory Memories in Starlings,” published in the current online edition of Psychological Science.

“These observations demonstrate that sleep consolidation enhances retention of interfering experiences, facilitating daytime learning and the subsequent formation of stable memories,” the authors wrote.

The paper was written by Timothy Brawn, a graduate researcher in psychology at UChicago; Howard Nusbaum, professor of psychology; and Daniel Margoliash, professor of psychology, organismal biology and anatomy. Nusbaum is a leading expert on learning, and Margoliash is a pioneer in the research of brain function and its development in birds.

For the study, the researchers conducted two experiments using 24 starlings each. They played two recorded songs from other starlings and tested the birds’ ability to recognize and repeat the two songs. After learning to recognize the two songs, the birds were later trained to recognize and perform a different pair of songs.

In their experiments, the authors examined the effect of sleep on the consolidation of starlings’ memories. After learning the second pair of songs, they were tested on the first before they went to sleep. They varied the time between testing.

Researchers found that learning the second pair of songs interfered with the birds’ ability to remember the first pair, regardless of the time between the daytime testing periods. Learning the first pair of songs also interfered with the birds’ ability to remember the second pair when they were tested on the second pair before they went to sleep.

When the starlings were allowed to sleep, however, they showed increases in performance on both the first and second pair of songs, suggesting that sleep consolidation enhances their memory, overcoming the effects of interference. When taught a new song pair after awaking, the birds were still able to remember what they had learned on the previous day, despite the new interference.

“The study demonstrates that sleep restores performance and makes learning robust against interference encountered after sleep. This process is critical to the formation and stability of long-term memories,” Nusbaum said.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>