Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep consolidates memories for competing tasks

21.03.2013
Sleep plays an important role in the brain’s ability to consolidate learning when two new potentially competing tasks are learned in the same day, research at the University of Chicago demonstrates.
Other studies have shown that sleep consolidates learning for a new task. The new study, which measured starlings’ ability to recognize new songs, shows that learning a second task can undermine the performance of a previously learned task. But this study is the first to show that a good night’s sleep helps the brain retain both new memories.

Starlings provide an excellent model for studying memory because of fundamental biological similarities between avian and mammalian brains, scholars wrote in the paper, “Sleep Consolidation of Interfering Auditory Memories in Starlings,” published in the current online edition of Psychological Science.

“These observations demonstrate that sleep consolidation enhances retention of interfering experiences, facilitating daytime learning and the subsequent formation of stable memories,” the authors wrote.

The paper was written by Timothy Brawn, a graduate researcher in psychology at UChicago; Howard Nusbaum, professor of psychology; and Daniel Margoliash, professor of psychology, organismal biology and anatomy. Nusbaum is a leading expert on learning, and Margoliash is a pioneer in the research of brain function and its development in birds.

For the study, the researchers conducted two experiments using 24 starlings each. They played two recorded songs from other starlings and tested the birds’ ability to recognize and repeat the two songs. After learning to recognize the two songs, the birds were later trained to recognize and perform a different pair of songs.

In their experiments, the authors examined the effect of sleep on the consolidation of starlings’ memories. After learning the second pair of songs, they were tested on the first before they went to sleep. They varied the time between testing.

Researchers found that learning the second pair of songs interfered with the birds’ ability to remember the first pair, regardless of the time between the daytime testing periods. Learning the first pair of songs also interfered with the birds’ ability to remember the second pair when they were tested on the second pair before they went to sleep.

When the starlings were allowed to sleep, however, they showed increases in performance on both the first and second pair of songs, suggesting that sleep consolidation enhances their memory, overcoming the effects of interference. When taught a new song pair after awaking, the birds were still able to remember what they had learned on the previous day, despite the new interference.

“The study demonstrates that sleep restores performance and makes learning robust against interference encountered after sleep. This process is critical to the formation and stability of long-term memories,” Nusbaum said.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>