Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep affects potency of vaccines

01.08.2012
As moms have always known, a good night's sleep is crucial to good health -- and now a new study led by a UCSF researcher shows that poor sleep can reduce the effectiveness of vaccines.

The study is the first performed outside a sleep laboratory to show that sleep duration is directly tied to vaccine immune response, the authors said.

The study, conducted while the UCSF researcher was a doctoral student at the University of Pittsburgh, will appear in the August issue of the journal "SLEEP."

"With the emergence of our 24-hour lifestyle, longer working hours, and the rise in the use of technology, chronic sleep deprivation has become a way of life for many Americans," said lead author Aric Prather, PhD, a clinical health psychologist and Robert Wood Johnson Foundation Health & Society Scholar at UCSF and UC Berkeley.

"These findings should help raise awareness in the public health community about the clear connection between sleep and health," Prather said.

Research has shown that poor sleep can make one susceptible to illnesses such as upper respiratory infections. To explore whether sleep duration, sleep efficiency, and sleep quality – assessed at home and not in a controlled sleep lab -- would impact immune processes important in the protection against infection, the researchers investigated the antibody response to hepatitis B vaccinations on adults in good health. Antibodies are manufactured by the immune system to identify and neutralize foreign objects such as viruses.

The study involved 125 people (70 women, 55 men) between the ages of 40 and 60. All were nonsmokers in relatively good health, and all lived in Pennsylvania – the study was conducted at the University of Pittsburgh. Each participant was administered the standard three-dose hepatitis B vaccine; the first and second dose were administered a month apart, followed by a booster dose at six months.

Antibody levels were measured prior to the second and third vaccine injection and six months after the final vaccination to determine whether participants had mounted a "clinically protective response."

All the participants completed sleep diaries detailing their bedtime, wake time and sleep quality, while 88 subjects also wore electronic sleep monitors known as actigraphs.

The researchers found that people who slept fewer than six hours on average per night were far less likely to mount antibody responses to the vaccine and thus were far more likely (11.5 times) to be unprotected by the vaccine than people who slept more than seven hours on average. Sleep quality did not affect response to vaccinations.

Of the 125 participants, 18 did not receive adequate protection from the vaccine. "Sleeping fewer than six hours conferred a significant risk of being unprotected as compared with sleeping more than seven hours per night," the scientists wrote.

The researchers stressed that sleep plays an important role in the regulation of the immune system. A lack of sleep, they said, may have detrimental effects on the immune system that are integral to vaccine response.

The National Sleep Foundation recommends seven to nine hours sleep a night. (For tips on a better night's sleep, see: http://www.ucsfhealth.org/education/tips_for_a_better_nights_sleep/index.html)

"Based on our findings and existing laboratory evidence, sleep may belong on the list of behavioral risk factors that influence vaccination efficacy," said Prather who in September will join the UCSF faculty as an assistant professor in the Department of Psychiatry. "While there is more work to be done in this area, in time physicians and other health care professionals who administer vaccines may want to consider asking their patients about their sleep patterns, since lack of sleep may significantly affect the potency of the vaccination."

The study's co-authors are Martica Hall, PhD, Jacqueline Fury, BS, Diana C. Ross, MSN, RN, Matthew Muldoon, MD, MPH, and Anna Marsland, PhD, of the University of Pittsburgh; and Sheldon Cohen, PhD of Carnegie Mellon University.

Financial support for the study was provided by a grant from the National Institute of Nursing Research (NR008237) and by a National Institute of Health fellowship to Prather.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Elizabeth Fernandez | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>