Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skin cancer study uncovers new tumor suppressor gene

31.03.2009
Genetic analysis of key group of enzymes may pave the way for more individualized treatments

National Institutes of Health (NIH) researchers have identified a gene that suppresses tumor growth in melanoma, the deadliest form of skin cancer.

The finding is reported today in the journal Nature Genetics as part of a systematic genetic analysis of a group of enzymes implicated in skin cancer and many other types of cancer.

The NIH analysis found that one-quarter of human melanoma tumors had changes, or mutations, in genes that code for matrix metalloproteinase (MMP) enzymes. The findings lay the foundation for more individualized cancer treatment strategies where MMP and other key enzymes play a functional role in tumor growth and spread of the disease.

Tumor suppressor genes encode proteins that normally serve as a brake on cell growth. When such genes are mutated, the brake may be lifted, resulting in the runaway cell growth known as cancer. In contrast, oncogenes are genes that encode proteins involved in normal cell growth. When such genes are mutated, they also may cause cancer, but they do so by activating growth-promoting signals. Cancer therapies that target oncogenes usually seek to block or reduce their action, while those aimed at tumor suppressor genes seek to restore or increase their action.

The new study may help to explain the disappointing performance of drugs designed to treat cancer by blocking MMP enzymes. Because members of the MMP gene family were thought to be oncogenes and many tumors express high levels of MMP enzymes, researchers have spent decades pursuing MMPs as promising targets for cancer therapies. However, when MMP inhibitors were tested in people with a wide range of cancers, the drugs failed to slow -- and in some cases even sped up -- tumor growth.

Now, it turns out that one of the most often mutated MMP genes in melanoma is not an oncogene at all. In its study, the team led by researchers from the National Human Genome Research Institute (NHGRI) found that MMP-8 actually serves as a tumor suppressor gene in melanoma. Consequently, in the estimated 6 percent of melanoma patients whose tumors harbor a mutated MMP-8 gene or related tumor suppressor(s), it may not be wise to block all MMPs. The study suggests that a better approach may be to look for drugs that restore or increase MMP-8 function or for drugs that block only those MMPs that are truly oncogenes.

"This research is an illustrative proof of concept that shows the value of genomic strategies for understanding cancer and possible therapies," said NHGRI Scientific Director Eric Green, M.D., Ph.D. "It is gratifying to see that genomic technologies are guiding scientific discovery, advancing cancer research, especially melanoma research."

Melanoma is the most serious form of skin cancer. In the United States and many other nations, melanoma is becoming more common every year. A major cause is thought to be overexposure to the sun. The ultraviolet radiation in sunlight can damage DNA and lead to cancer-causing genetic changes within skin cells.

MMP enzymes help the body to break down and recycle proteins, playing a crucial role in the process of remodeling skin after sunburns, cuts or other injuries. The MMP gene family has been associated with tumor growth in a variety of cancers, including breast, colon and melanoma.

To explore the role of MMP genes in melanoma, the NHGRI researchers studied a bank of tumor and blood samples collected from 79 patients with aggressive melanoma by collaborator Steven Rosenberg, M.D., Ph.D., chief of surgery at the National Cancer Institute (NCI). Specifically, they compared the sequence of MMP genes in tumors and normal DNA from the same patients, looking for mutations in all 23 members of the MMP gene family.

The researchers identified 28 different mutations in eight MMP genes in the melanoma tumors studied. These mutations were found to be distributed in different frequencies and patterns among the tumor samples. Nearly one-quarter of the tumors analyzed had at least one MMP gene mutation. Some mutations were found in as few as 3 percent of tumors, while more than 6 percent of tumors had mutations in MMP-8 and more than 7 percent had mutations in MMP-27, which codes for an enzyme very similar to MMP-8.

"We often talk about cancer as though it is one disease, and cancers do have many common denominators. But when we look at the DNA level, we see that different cancers have different genetic profiles, and so do different patients who have the same cancer," said the study's senior author, Yardena Samuels, Ph.D., an investigator in the Cancer Genetics Branch of the NHGRI's Division of Intramural Research.

Dr. Samuels and her collaborators followed up their DNA sequencing work with cell and animal studies to see whether MMP-8 mutations affect enzyme function. Strikingly, the researchers showed that five of the mutations reduced activity of the MMP-8 enzyme. The researchers next studied whether MMP-8 mutations promote activities related to cancer. Indeed, cells with MMP-8 mutations showed increased ability to multiply outside the constraints of normal cells, a hallmark of cancer development known as anchorage-independent growth. Likewise, cells with MMP-8 mutations had a greater ability to migrate -- a key aspect of cancer metastasis -- than normal cells.

The researchers found that mice injected with cells expressing normal MMP-8 did not develop skin ulcers, which are one of the most important measures of cancer aggression in melanoma. In contrast, mice injected with cells expressing mutated MMP-8 went on to develop ulcerations and metastases in their lungs.

Raymond MacDougall | EurekAlert!
Further information:
http://www.nih.gov
http://www.genome.gov

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>