Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Size-related Food Labels Impact How Much We Eat

25.06.2013
Just, D. R., & Wansink, B. (2013). One man’s tall is another man’s small: How the framing of portion-size influences food choice. Health Economics, in press.
Just what size is a “small” drink—8 ounces, 12 ounces, 16 ounces? The truth is, those are all “small” sizes depending on what restaurants and fast food joints you go to. As customers, we are used to ordering food based on relative size, but according to a new study from Cornell University, these seemingly standard labels impact our entire eating experience.

One man’s tall is another man’s small
Dr. David R. Just and Dr. Brian Wansink of the Cornell Food & Brand Lab designed a study to understand how portion labels impact what you’re willing to pay for your food as well as how much you actually eat. The researchers served two different portion sizes of lunch items, including spaghetti: either 1 cup (small) or 2 cups (large).
The twist was in the labeling: for some participants, the small and large portions were labeled “Half-Size” and “Regular” respectively, giving the impression that the large 2-cup portion was the norm. For the others, however, the same portions were labeled “Regular” and “Double-Size”—indicating that the smaller 1-cup portion was the norm. These varying concepts of “Regular” portions made all the difference in how much people would spend and subsequently eat.

Portion Distortion
The researchers examined how people’s eating habits differed depending on these food labels. When served identical large portions of spaghetti, individuals ate much more when it was labeled “Regular” than when it was labeled “Double-Size;” in fact, those who thought it was “Double-size” left 10 times as much food on their plates!

To explore how portion labels impact how much patrons will pay, the researchers had people bid on each portion in an auction-like set up. When the portion was labeled “Half-Size,” participants were only willing to pay half as much as when the same portion had was labeled “Regular.” The labels themselves, rather than the visual appearance of each serving, acted as indicators of the amount of food on each plate compared to a hypothetical normal serving.

The study indicated that people primarily use labels alone to dictate how much food is a ‘normal’ portion and that they adjust their intake accordingly. These studies together show that people are not only willing to pay more for a portion that sounds larger but also that they will eat more of an enormous portion if they believe it is “Regular” to do so.

The huge impact of size labels suggests that both consumers and producers could benefit from standardization of food size-labeling; clearly defining the actual amount of food in a “small” or a “large” would inform customers of just how much food they are ordering every time they ask for a certain size. Until then, take the time to think about what portion you’re really getting when you order your standard “Medium” meal!

Article Summary by Kelsey Gatto
Full text paper:
(read here: http://onlinelibrary.wiley.com/doi/10.1002/hec.2949/full)

Sandra Cuellar | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>