Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sinusitis linked to microbial diversity

13.09.2012
UCSF study suggests new approach for dealing with common ailment

A common bacteria ever-present on the human skin and previously considered harmless, may, in fact, be the culprit behind chronic sinusitis, a painful, recurring swelling of the sinuses that strikes more than one in ten Americans each year, according to a study by scientists at the University of California, San Francisco.

The team reports this week in the journal Science Translational Medicine that sinusitis may be linked to the loss of normal microbial diversity within the sinuses following an infection and the subsequent colonization of the sinuses by the culprit bacterium, which is called Corynebacterium tuberculostearicum.

In their study, the researchers compared the microbial communities in samples from the sinuses of 10 patients with sinusitis and from 10 healthy people, and showed that the sinusitis patients lacked a slew of bacteria that were present in the healthy individuals. The patients also had large increases in the amount of Corynebacterium tuberculostearicum in their sinuses, which are located in the forehead, cheeks and eyes.

The team also identified a common bacterium found within the sinuses of healthy people called Lactobacillus sakei that seems to help the body naturally ward off sinusitis. In laboratory experiments, inoculating mice with this one bacterium defended them against the condition.

"Presumably these are sinus-protective species," said Susan Lynch, PhD, an associate professor of medicine and director of the Colitis and Crohn's Disease Microbiome Research Core at UCSF.

What it all suggests, she added, is that the sinuses are home to a diverse "microbiome" that includes protective bacteria. These "microbial shields" are lost during chronic sinusitis, she said, and restoring the natural microbial ecology may be a way of mitigating this common condition.

A Painful, Costly Condition

Sinuses are air-filled cavities in the front of the skull that connect to the nasal passages and are lined with mucosal surfaces. They are somewhat shrouded in mystery. Scientists are not entirely sure what they do. They may exist to heat air as it passes into the body, they may be associated with the immune system, or as Lynch and her colleagues speculate, they may represent a site of microbial surveillance just inside the nose where the body can sample bacteria and other microbes entering the body.

Though the sinuses' underlying purpose is still unclear, they are all too familiar to American doctors and their patients because of what happens when the thin tissues lining them become inflamed, as occurs in chronic sinusitis—one of the most common reasons why people go to the doctor in the United States. There are about 30 million cases each year, and the cost to the healthcare system is an estimated $2.4 billion dollars annually.

The pain of sinusitis can last for months. Doctors typically prescribe bacteria-killing antibiotics and, in more severe and long-lasting cases, conduct sinus surgeries. However, said Andrew Goldberg, MSCE, MD, the director of rhinology and sinus surgery at UCSF and a co-author on the paper, "the premise for our understanding of chronic sinusitis and therapeutic treatment appears to be wrong, and a different therapeutic strategy seems appropriate."

The new work suggests that if the underlying cause of sinusitis is due to changes to the microbiome of bacterial species colonizing sinus tissue, restoring the naturally-occurring, protective bacteria to these cavities may be an effective way to treat this condition.

However, the UCSF-led team warned that the promise of this discovery does not offer an immediate new treatment or cure for sinusitis. Any new approaches based on these observations still have to be developed and tested for safety and effectiveness in human clinical trials.

The article, "Sinus Microbiome Diversity Depletion and Corynebacterium tuberculostearicum Enrichment Mediates Rhinosinusitis" by Nicole A. Abreu, Nabeetha A. Nagalingam, Yuanlin Song, Frederick C. Roediger, Steven D. Pletcher, Andrew N. Goldberg, and Susan V. Lynch appears in the September 12, 2012, issue of Science Translational Medicine. See: http://stm.sciencemag.org/

In addition to UCSF, authors on this study are affiliated with San Francisco State University, the University of California Berkley, and Fudan University in Shanghai, China.

This study was supported by the American Rhinological Society, the Rainin Foundation, the National Institute of Allergy and Infectious Diseases (one of the National Institutes of Health), the Minority Biomedical Research Support-Research Initiative for Scientific Enhancement (MBRS-RISE), the California Institute for Regenerative Medicine, and the Rebecca Susan Buffett Foundation.

Lynch is a member of the advisory board of Second Genome, which is developing treatments for human diseases based on microbiome research, and she is one of three co-authors on the paper who have filed a patent application for sinusitis diagnostics and treatments.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>