Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sinusitis linked to microbial diversity

13.09.2012
UCSF study suggests new approach for dealing with common ailment

A common bacteria ever-present on the human skin and previously considered harmless, may, in fact, be the culprit behind chronic sinusitis, a painful, recurring swelling of the sinuses that strikes more than one in ten Americans each year, according to a study by scientists at the University of California, San Francisco.

The team reports this week in the journal Science Translational Medicine that sinusitis may be linked to the loss of normal microbial diversity within the sinuses following an infection and the subsequent colonization of the sinuses by the culprit bacterium, which is called Corynebacterium tuberculostearicum.

In their study, the researchers compared the microbial communities in samples from the sinuses of 10 patients with sinusitis and from 10 healthy people, and showed that the sinusitis patients lacked a slew of bacteria that were present in the healthy individuals. The patients also had large increases in the amount of Corynebacterium tuberculostearicum in their sinuses, which are located in the forehead, cheeks and eyes.

The team also identified a common bacterium found within the sinuses of healthy people called Lactobacillus sakei that seems to help the body naturally ward off sinusitis. In laboratory experiments, inoculating mice with this one bacterium defended them against the condition.

"Presumably these are sinus-protective species," said Susan Lynch, PhD, an associate professor of medicine and director of the Colitis and Crohn's Disease Microbiome Research Core at UCSF.

What it all suggests, she added, is that the sinuses are home to a diverse "microbiome" that includes protective bacteria. These "microbial shields" are lost during chronic sinusitis, she said, and restoring the natural microbial ecology may be a way of mitigating this common condition.

A Painful, Costly Condition

Sinuses are air-filled cavities in the front of the skull that connect to the nasal passages and are lined with mucosal surfaces. They are somewhat shrouded in mystery. Scientists are not entirely sure what they do. They may exist to heat air as it passes into the body, they may be associated with the immune system, or as Lynch and her colleagues speculate, they may represent a site of microbial surveillance just inside the nose where the body can sample bacteria and other microbes entering the body.

Though the sinuses' underlying purpose is still unclear, they are all too familiar to American doctors and their patients because of what happens when the thin tissues lining them become inflamed, as occurs in chronic sinusitis—one of the most common reasons why people go to the doctor in the United States. There are about 30 million cases each year, and the cost to the healthcare system is an estimated $2.4 billion dollars annually.

The pain of sinusitis can last for months. Doctors typically prescribe bacteria-killing antibiotics and, in more severe and long-lasting cases, conduct sinus surgeries. However, said Andrew Goldberg, MSCE, MD, the director of rhinology and sinus surgery at UCSF and a co-author on the paper, "the premise for our understanding of chronic sinusitis and therapeutic treatment appears to be wrong, and a different therapeutic strategy seems appropriate."

The new work suggests that if the underlying cause of sinusitis is due to changes to the microbiome of bacterial species colonizing sinus tissue, restoring the naturally-occurring, protective bacteria to these cavities may be an effective way to treat this condition.

However, the UCSF-led team warned that the promise of this discovery does not offer an immediate new treatment or cure for sinusitis. Any new approaches based on these observations still have to be developed and tested for safety and effectiveness in human clinical trials.

The article, "Sinus Microbiome Diversity Depletion and Corynebacterium tuberculostearicum Enrichment Mediates Rhinosinusitis" by Nicole A. Abreu, Nabeetha A. Nagalingam, Yuanlin Song, Frederick C. Roediger, Steven D. Pletcher, Andrew N. Goldberg, and Susan V. Lynch appears in the September 12, 2012, issue of Science Translational Medicine. See: http://stm.sciencemag.org/

In addition to UCSF, authors on this study are affiliated with San Francisco State University, the University of California Berkley, and Fudan University in Shanghai, China.

This study was supported by the American Rhinological Society, the Rainin Foundation, the National Institute of Allergy and Infectious Diseases (one of the National Institutes of Health), the Minority Biomedical Research Support-Research Initiative for Scientific Enhancement (MBRS-RISE), the California Institute for Regenerative Medicine, and the Rebecca Susan Buffett Foundation.

Lynch is a member of the advisory board of Second Genome, which is developing treatments for human diseases based on microbiome research, and she is one of three co-authors on the paper who have filed a patent application for sinusitis diagnostics and treatments.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>