Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single bioptic telescope for low vision driving may not obscure road view of second eye

10.05.2011
A study by scientists at Schepens Eye Research Institute shows that a bioptic telescope on one lens of a pair of glasses used to magnify traffic signs and lights may not prevent the wider view of the road with the second eye.

The study results, which will be published in the May 2011 Archives of Ophthalmology, are the first evidence that--under more realistic viewing conditions than in earlier studies--the second eye can detect objects in the area obscured by the magnification effect of the telescope (called the ring scotoma).

"These study results are significant because they should ease official and public concerns about the safety of bioptic telescope use for driving with visual impairments," says Dr. Eli Peli, the principal investigator of the study, who is a low vision expert, a senior Schepens scientist, and a professor of Ophthalmology at Harvard Medical School.

In previous studies, participants wearing the bioptic telescope were asked to view a blank (plain) background and focus on a simple fixation point—a cross— while detecting random visual targets presented to them, a task that requires little attention and concentration.

"Our current study required subjects to view more complex, textured backgrounds and focus on and read letters, which are more akin to visual situations encountered in real life and on the road," says Peli.

Bioptics, developed more than 100 years ago, are small telescopes that are attached above the center of one spectacle lens. A slight downward tilt of the head and upward shift of the eyes can bring a distant road sign or traffic light into view for people with vision impairments. When looking through the telescope, a blind area (scotoma) is created due to the magnification of the telescope. The blind area is in the shape of a ring surrounding what is seen through the telescope (hence the name "ring scotoma"). For instance, a person viewing a traffic light with the telescope will see the light, but will not be able to see the surrounding intersection, with the same eye. Although bioptics were introduced as driving aids 50 years ago and are approved for driving in 39 states, safety has remained a concern, in particular the effect of the ring scotoma on detection of traffic hazards. In some states this concern resulted in restricting the telescope to one eye only, leaving the other to monitor the area of the ring scotoma during telescope use.

In the Archives of Ophthalmology study, Amy Doherty, the first author, and the research team, conducted a series of tests evaluating the ability of the second (fellow) eye to detect targets in the area of the ring scotoma on both simple and complex backgrounds, with and without the bioptic telescope on one lens.

They began by fitting 14 subjects with bioptic glasses and used a novel display system that allowed them to present visual stimuli to each eye separately while both eyes were watching the screen. The team then "mapped" or determined the dimensions and position of the blind area (ring scotoma) in each subject's telescopic eye by presenting visual stimuli only to that eye.

Next, each subject underwent four viewing conditions while wearing the telescope in front of one eye, and the same four conditions without the telescope. In all cases, both eyes were open, while a visual stimulus or target (a small checkerboard square), presented to the second eye only, appeared randomly in different parts of the ring scotoma area. The subjects pressed a button whenever they saw the target.

The four conditions were: passively viewing a cross on a gray background, passively viewing a cross on a more complex textured background, actively reading letters on a gray background, and actively reading letters on the textured background. The textured background seen magnified in the telescopic eye resulted in a rivalry (competition) effect between the images from the two eyes that could result in the brain ignoring (suppressing) the image from the second eye. Any suppression of the second eye when looking through a bioptic telescope could potentially result in a traffic hazard not being noticed.

In all cases no significant difference was found between what the second eye saw when the first eye was using the telescope and when it wasn't using the telescope. With the bioptics, the second eye was able to detect the target 86 percent of the time, while without the bioptics, it detected the target 87 percent of the time. As expected, more targets were detected on a gray background than on a textured background and while focused on a simple cross than while reading letters.

"These results suggest that the bioptic driver may not be blind to traffic when looking through the telescope, because the second eye can detect targets in the area obscured by the telescope," says Doherty.

While the study results are encouraging, Peli and Doherty agree that it is still essential to test the use of bioptics in even more realistic circumstances.

"Our next testing conditions will be with video segments that closely mimic the visual scene and attention required during actual driving situations," says Doherty, who adds that over time, the research team also hopes to gather data from driving simulators and even actual on-the-road monitoring.

Drs Alex Bowers and Gang Luo, also in The Mobility Enhancement and Rehabilitation Center at Schepens Eye Research Institute, contributed to the study.

Schepens Eye Research Institute is an affiliate of Harvard Medial School and the largest independent eye research institute in the nation.

Patti Jacobs | EurekAlert!
Further information:
http://www.schepens.harvard.edu/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>