Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Single bioptic telescope for low vision driving may not obscure road view of second eye

A study by scientists at Schepens Eye Research Institute shows that a bioptic telescope on one lens of a pair of glasses used to magnify traffic signs and lights may not prevent the wider view of the road with the second eye.

The study results, which will be published in the May 2011 Archives of Ophthalmology, are the first evidence that--under more realistic viewing conditions than in earlier studies--the second eye can detect objects in the area obscured by the magnification effect of the telescope (called the ring scotoma).

"These study results are significant because they should ease official and public concerns about the safety of bioptic telescope use for driving with visual impairments," says Dr. Eli Peli, the principal investigator of the study, who is a low vision expert, a senior Schepens scientist, and a professor of Ophthalmology at Harvard Medical School.

In previous studies, participants wearing the bioptic telescope were asked to view a blank (plain) background and focus on a simple fixation point—a cross— while detecting random visual targets presented to them, a task that requires little attention and concentration.

"Our current study required subjects to view more complex, textured backgrounds and focus on and read letters, which are more akin to visual situations encountered in real life and on the road," says Peli.

Bioptics, developed more than 100 years ago, are small telescopes that are attached above the center of one spectacle lens. A slight downward tilt of the head and upward shift of the eyes can bring a distant road sign or traffic light into view for people with vision impairments. When looking through the telescope, a blind area (scotoma) is created due to the magnification of the telescope. The blind area is in the shape of a ring surrounding what is seen through the telescope (hence the name "ring scotoma"). For instance, a person viewing a traffic light with the telescope will see the light, but will not be able to see the surrounding intersection, with the same eye. Although bioptics were introduced as driving aids 50 years ago and are approved for driving in 39 states, safety has remained a concern, in particular the effect of the ring scotoma on detection of traffic hazards. In some states this concern resulted in restricting the telescope to one eye only, leaving the other to monitor the area of the ring scotoma during telescope use.

In the Archives of Ophthalmology study, Amy Doherty, the first author, and the research team, conducted a series of tests evaluating the ability of the second (fellow) eye to detect targets in the area of the ring scotoma on both simple and complex backgrounds, with and without the bioptic telescope on one lens.

They began by fitting 14 subjects with bioptic glasses and used a novel display system that allowed them to present visual stimuli to each eye separately while both eyes were watching the screen. The team then "mapped" or determined the dimensions and position of the blind area (ring scotoma) in each subject's telescopic eye by presenting visual stimuli only to that eye.

Next, each subject underwent four viewing conditions while wearing the telescope in front of one eye, and the same four conditions without the telescope. In all cases, both eyes were open, while a visual stimulus or target (a small checkerboard square), presented to the second eye only, appeared randomly in different parts of the ring scotoma area. The subjects pressed a button whenever they saw the target.

The four conditions were: passively viewing a cross on a gray background, passively viewing a cross on a more complex textured background, actively reading letters on a gray background, and actively reading letters on the textured background. The textured background seen magnified in the telescopic eye resulted in a rivalry (competition) effect between the images from the two eyes that could result in the brain ignoring (suppressing) the image from the second eye. Any suppression of the second eye when looking through a bioptic telescope could potentially result in a traffic hazard not being noticed.

In all cases no significant difference was found between what the second eye saw when the first eye was using the telescope and when it wasn't using the telescope. With the bioptics, the second eye was able to detect the target 86 percent of the time, while without the bioptics, it detected the target 87 percent of the time. As expected, more targets were detected on a gray background than on a textured background and while focused on a simple cross than while reading letters.

"These results suggest that the bioptic driver may not be blind to traffic when looking through the telescope, because the second eye can detect targets in the area obscured by the telescope," says Doherty.

While the study results are encouraging, Peli and Doherty agree that it is still essential to test the use of bioptics in even more realistic circumstances.

"Our next testing conditions will be with video segments that closely mimic the visual scene and attention required during actual driving situations," says Doherty, who adds that over time, the research team also hopes to gather data from driving simulators and even actual on-the-road monitoring.

Drs Alex Bowers and Gang Luo, also in The Mobility Enhancement and Rehabilitation Center at Schepens Eye Research Institute, contributed to the study.

Schepens Eye Research Institute is an affiliate of Harvard Medial School and the largest independent eye research institute in the nation.

Patti Jacobs | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>