Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single bioptic telescope for low vision driving may not obscure road view of second eye

10.05.2011
A study by scientists at Schepens Eye Research Institute shows that a bioptic telescope on one lens of a pair of glasses used to magnify traffic signs and lights may not prevent the wider view of the road with the second eye.

The study results, which will be published in the May 2011 Archives of Ophthalmology, are the first evidence that--under more realistic viewing conditions than in earlier studies--the second eye can detect objects in the area obscured by the magnification effect of the telescope (called the ring scotoma).

"These study results are significant because they should ease official and public concerns about the safety of bioptic telescope use for driving with visual impairments," says Dr. Eli Peli, the principal investigator of the study, who is a low vision expert, a senior Schepens scientist, and a professor of Ophthalmology at Harvard Medical School.

In previous studies, participants wearing the bioptic telescope were asked to view a blank (plain) background and focus on a simple fixation point—a cross— while detecting random visual targets presented to them, a task that requires little attention and concentration.

"Our current study required subjects to view more complex, textured backgrounds and focus on and read letters, which are more akin to visual situations encountered in real life and on the road," says Peli.

Bioptics, developed more than 100 years ago, are small telescopes that are attached above the center of one spectacle lens. A slight downward tilt of the head and upward shift of the eyes can bring a distant road sign or traffic light into view for people with vision impairments. When looking through the telescope, a blind area (scotoma) is created due to the magnification of the telescope. The blind area is in the shape of a ring surrounding what is seen through the telescope (hence the name "ring scotoma"). For instance, a person viewing a traffic light with the telescope will see the light, but will not be able to see the surrounding intersection, with the same eye. Although bioptics were introduced as driving aids 50 years ago and are approved for driving in 39 states, safety has remained a concern, in particular the effect of the ring scotoma on detection of traffic hazards. In some states this concern resulted in restricting the telescope to one eye only, leaving the other to monitor the area of the ring scotoma during telescope use.

In the Archives of Ophthalmology study, Amy Doherty, the first author, and the research team, conducted a series of tests evaluating the ability of the second (fellow) eye to detect targets in the area of the ring scotoma on both simple and complex backgrounds, with and without the bioptic telescope on one lens.

They began by fitting 14 subjects with bioptic glasses and used a novel display system that allowed them to present visual stimuli to each eye separately while both eyes were watching the screen. The team then "mapped" or determined the dimensions and position of the blind area (ring scotoma) in each subject's telescopic eye by presenting visual stimuli only to that eye.

Next, each subject underwent four viewing conditions while wearing the telescope in front of one eye, and the same four conditions without the telescope. In all cases, both eyes were open, while a visual stimulus or target (a small checkerboard square), presented to the second eye only, appeared randomly in different parts of the ring scotoma area. The subjects pressed a button whenever they saw the target.

The four conditions were: passively viewing a cross on a gray background, passively viewing a cross on a more complex textured background, actively reading letters on a gray background, and actively reading letters on the textured background. The textured background seen magnified in the telescopic eye resulted in a rivalry (competition) effect between the images from the two eyes that could result in the brain ignoring (suppressing) the image from the second eye. Any suppression of the second eye when looking through a bioptic telescope could potentially result in a traffic hazard not being noticed.

In all cases no significant difference was found between what the second eye saw when the first eye was using the telescope and when it wasn't using the telescope. With the bioptics, the second eye was able to detect the target 86 percent of the time, while without the bioptics, it detected the target 87 percent of the time. As expected, more targets were detected on a gray background than on a textured background and while focused on a simple cross than while reading letters.

"These results suggest that the bioptic driver may not be blind to traffic when looking through the telescope, because the second eye can detect targets in the area obscured by the telescope," says Doherty.

While the study results are encouraging, Peli and Doherty agree that it is still essential to test the use of bioptics in even more realistic circumstances.

"Our next testing conditions will be with video segments that closely mimic the visual scene and attention required during actual driving situations," says Doherty, who adds that over time, the research team also hopes to gather data from driving simulators and even actual on-the-road monitoring.

Drs Alex Bowers and Gang Luo, also in The Mobility Enhancement and Rehabilitation Center at Schepens Eye Research Institute, contributed to the study.

Schepens Eye Research Institute is an affiliate of Harvard Medial School and the largest independent eye research institute in the nation.

Patti Jacobs | EurekAlert!
Further information:
http://www.schepens.harvard.edu/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>