Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple math explains dramatic beak shape variation in Darwin's finches

23.02.2010
Scaling and shear link morphology, genotype and developmental genetics

From how massive humpbacks glide through the sea with ease to the efficient way fungal spores fly, applied mathematicians at Harvard have excavated the equations behind a variety of complex phenomena.

The latest numerical feat by Otger Campàs and Michael Brenner, working closely with a team of Harvard evolutionary biologists led by Arhat Abzhanov, zeroes in on perhaps the most famous icon of evolution: the beaks of Darwin's finches.

In a study appearing in the February 16 Early Edition of the Proceedings of the National Academy of Sciences (PNAS), the researchers demonstrate that simple changes in beak length and depth can explain the important morphological diversity of all beak shapes within the famous genus Geospiza.

Broadly, the work suggests that a few, simple mathematical rules may be responsible for complicated biological adaptations.

The investigation began at Harvard's Museum of Comparative Zoology, where Campàs, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS), and Ricardo Mallarino, a graduate student in the Department of Organismic and Evolutionary Biology (OEB) at Harvard, obtained photographs of beak profiles from specimens of Darwin's finches.

Using digitization techniques, the researchers found that 14 distinct beak shapes, that at first glance look unrelated, could be categorized into three broader, group shapes. Despite the striking variety of sizes and shapes, mathematically, the beaks within a particular group only differ by their scales.

"It is not possible, however, to explain the full diversity of beak shapes of all Darwin's finches with only changes in beak length and depth," explains Campàs. "By combining shear transformations (basically, what happens when you transform a square into a rhombus by shoving the sides toward one another), with changes in length and depth, we can then collapse all beak shapes onto a common shape."

Using Micro-Computed Tomography (CT) scans on the heads for the different species in the genus Geospiza, Anthony Herrel, an Associate of the Museum of Comparative Zoology, helped the team go one step further, verifying that the bone structure of the birds exhibits a similar scaling pattern as the beaks.

Thus, beak shape variation seems to be constrained by only three parameters: the depth of the length for the scaling transformation and the degree of shear.

Brenner, Glover Professor of Applied Mathematics at SEAS, says he is "astonished" that so few variables can help explain such great diversity. The mechanism that allows organisms to adapt so readily to new environments may be a relatively "easy" process.

"This is really significant because it means that adaptive changes in phenotype can be explained by modifications in a few simple parameters," adds Mallarino. "These results have encouraged us to try to find the remaining molecules responsible for causing these changes."

In fact, the mathematical findings also have a parallel genetic basis. Abzhanov, an assistant professor in OEB, and his collaborators explored the role of the two genes responsible for controlling beak shape variation. Bmp4 expression affects width and depth and Calmodulin expression relates to length. It turns out that the expression levels of the two genes, in particular Bmp4, are fundamentally related to the scaling transformations.

"We wanted to know how beaks changed on a fundamental level during evolution of Darwin's finches and how many unique beak shapes we need yet to explain using our developmental genetics approach," says Abzhanov. "Our joint study demonstrates that we understand the species-level variation really well where scaling transformations match up perfectly with expression and function of developmental genes which regulate precisely such type of change. Now we want to understand how novel beak shapes resulting from higher order transformations evolved in Darwin's finches and beyond."

Campàs reflects that the finding helps to address an idea that Darwin raised nearly 175 years ago in the Voyage of the Beagle: "The most curious fact is the perfect gradation in the size of the beaks in the different species of Geospiza, from one as large as that of a hawfinch to that of a chaffinch, and even to that of a warbler … Seeing this gradation and diversity of structure in one small, intimately related group of birds, one might really fancy that from an original paucity of birds in this archipelago [Galapagos], one species had been taken and modified for different ends."

The researchers acknowledge the support of the National Science Foundation through the Division of Mathematical Sciences, and the Materials Research Science and Engineering Center, both at Harvard; the Kavli Institute for Bionano Science and Technology at Harvard University; and the National Institutes of Health.

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.seas.harvard.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>