Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No simple explanation for why adolescents take risks

03.05.2010
Study shows weak executive cognitive function not always to blame

Conventional wisdom holds that adolescents are susceptible to drug use and other risk-taking behavior. However, a one-size-fits-all approach to curbing these behaviors likely will be unsuccessful, according to research to be presented Monday, May 3 at the Pediatric Academic Societies (PAS) annual meeting in Vancouver, British Columbia, Canada.

Studies have suggested that increased risk-taking in adolescence may be due to late maturation of brain functions known as executive cognitive functions, which control impulsivity. One of these functions, called working memory, does not fully mature until the third decade of life.

A collaborative investigative team, led by Daniel Romer, PhD, from the Annenberg Public Policy Center, and Hallam Hurt, MD, from the Children's Hospital of Philadelphia, aimed to track the development of risk-taking behavior and executive cognitive functions in 387 youths of mixed race, ethnicity and socioeconomic status in the Philadelphia area. They assessed working memory, two types of impulsivity (sensation seeking and acting without thinking) and risk behaviors such as fighting, gambling and alcohol use over four years starting when the youths were 10 to 12 years of age.

As expected, results showed that youths who scored high on measures of impulsivity engaged in risky behaviors at a younger age. However, not all of these youths had weaknesses in working memory. Those with stronger working memory ability exhibited more sensation-seeking behavior, while those with poor working memory scored higher on measures of acting without thinking.

The results contradict the assumption that all adolescent risk-taking is simply the result of weak executive cognitive function, Dr. Romer explained. The results also indicate that different types of interventions will be needed.

"Our findings clearly suggest that explanations for why adolescents take risks are not simple," Dr. Romer said. "Many adolescents have the capacity to control their risk-taking, and we will need to find ways for them to channel sensation-seeking drives toward safer activities."

To see the abstract, go to http://www.abstracts2view.com/pas/view.php?nu=PAS10L1_1772&terms

The Pediatric Academic Societies (PAS) are four individual pediatric organizations who co-sponsor the PAS Annual Meeting – the American Pediatric Society, the Society for Pediatric Research, the Academic Pediatric Association, and the American Academy of Pediatrics. Members of these organizations are pediatricians and other health care providers who are practicing in the research, academic and clinical arenas. The four sponsoring organizations are leaders in the advancement of pediatric research and child advocacy within pediatrics, and all share a common mission of fostering the health and well being of children worldwide. For more information, visit www.pas-meeting.org. Follow news of the PAS meeting on Twitter at http://twitter.com/PedAcadSoc.

Susan Martin | EurekAlert!
Further information:
http://www.aap.org

Further reports about: PAS Pediatric Philadelphia academic cognitive function working memory

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>