Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silencing brain cells with yellow and blue light

07.01.2010
New tools use light to turn off brain cells and possibly treat brain disorders

Neuroscientists at the Massachusetts Institute of Technology have developed a powerful new class of tools to reversibly shut down brain activity using different colors of light.

When targeted to specific neurons, they could potentially lead to new treatments for abnormal brain activity associated with disorders including chronic pain, epilepsy, brain injury and Parkinson's disease.

Such disorders could best be treated by silencing, rather than stimulating abnormal brain activity. These new tools, or 'super silencers,' exert exquisite control over the timing in which overactive neural circuits are shut down --an effect that is not possible with existing drugs or other conventional therapies.

The National Science Foundation's division of mathematical sciences supports the research through a grant to the Cognitive Rhythms Collaborative, which is comprised of four research groups in the Boston area focused on questions in neuroscience. The collaborative brings together researchers with expertise ranging from experimental design to mathematical modeling. The research paper, "High-Performance Genetically-Targetable Optical Neural Silencing by Light-Driven Proton Pumps," appears in the Jan. 7 issue of the journal Nature.

"Silencing different sets of neurons with different colors of light allows us to understand how they work together to implement brain functions," explains Ed Boyden, senior author of the study. "Using these new tools, we can look at two neural pathways and study how they compute together," he says.

The tools promise to help researchers understand how to control neural circuits, leading to new understandings and treatments for brain disorders. Boyden, the Benesse Career Development Professor in the MIT Media Lab and an associate member of the McGovern Institute for Brain Research at MIT, calls brain disorders "some of the biggest unmet medical needs in the world."

Boyden's 'super silencers' derive from two genes found in different natural organisms such as bacteria and fungi. These genes, referred to as Arch and Mac, are light-activated proteins that help the organisms make energy. When Arch and Mac are placed within neurons, researchers can inhibit their activity by shining light on them. Light activates the proteins, which lowers the voltage in the neurons and safely and effectively prevents them from firing. Arch is specifically sensitive to yellow light, while Mac is activated with blue light.

"In this way the brain can be programmed with different colors of light to study and possibly correct the corrupted neural computations that lead to disease," explains co-author Brian Chow, postdoctoral associate in Boyden's lab.

"Multicolor silencing dramatically increases the complexity with which you can study neural circuits," says co-author Xue Han, another postdoctoral researcher in Boyden's lab. "We will use these tools to parse out the neural mechanisms of cognition."

Determining whether Arch and Mac are safe and effective in monkeys will be a critical next step towards the potential use of these optical silencing tools in humans. Boyden plans to use these 'super silencers' to examine the neural circuits of cognition and emotion and to find targets in the brain that, when shut down, could relieve pain and treat epilepsy.

His group continues to mine the natural world for new and even more powerful tools to manipulate brain cell activity--tools that he hopes will empower scientists to explore neural circuits in ways never before possible.

Additional funding for this research was provided by the National Institutes of Health, the McGovern Institute Neurotechnology Program at MIT, the Department of Defense, the National Alliance for Research on Schizophrenia and Depression, the Alfred P. Sloan Foundation, Jerry and Marge Burnett, the Society for Neuroscience, the MIT Media Lab, the Benesse Foundation, the Wallace H. Coulter Foundation and the Helen Hay Whitney Foundation.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>