Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silencing brain cells with yellow and blue light

New tools use light to turn off brain cells and possibly treat brain disorders

Neuroscientists at the Massachusetts Institute of Technology have developed a powerful new class of tools to reversibly shut down brain activity using different colors of light.

When targeted to specific neurons, they could potentially lead to new treatments for abnormal brain activity associated with disorders including chronic pain, epilepsy, brain injury and Parkinson's disease.

Such disorders could best be treated by silencing, rather than stimulating abnormal brain activity. These new tools, or 'super silencers,' exert exquisite control over the timing in which overactive neural circuits are shut down --an effect that is not possible with existing drugs or other conventional therapies.

The National Science Foundation's division of mathematical sciences supports the research through a grant to the Cognitive Rhythms Collaborative, which is comprised of four research groups in the Boston area focused on questions in neuroscience. The collaborative brings together researchers with expertise ranging from experimental design to mathematical modeling. The research paper, "High-Performance Genetically-Targetable Optical Neural Silencing by Light-Driven Proton Pumps," appears in the Jan. 7 issue of the journal Nature.

"Silencing different sets of neurons with different colors of light allows us to understand how they work together to implement brain functions," explains Ed Boyden, senior author of the study. "Using these new tools, we can look at two neural pathways and study how they compute together," he says.

The tools promise to help researchers understand how to control neural circuits, leading to new understandings and treatments for brain disorders. Boyden, the Benesse Career Development Professor in the MIT Media Lab and an associate member of the McGovern Institute for Brain Research at MIT, calls brain disorders "some of the biggest unmet medical needs in the world."

Boyden's 'super silencers' derive from two genes found in different natural organisms such as bacteria and fungi. These genes, referred to as Arch and Mac, are light-activated proteins that help the organisms make energy. When Arch and Mac are placed within neurons, researchers can inhibit their activity by shining light on them. Light activates the proteins, which lowers the voltage in the neurons and safely and effectively prevents them from firing. Arch is specifically sensitive to yellow light, while Mac is activated with blue light.

"In this way the brain can be programmed with different colors of light to study and possibly correct the corrupted neural computations that lead to disease," explains co-author Brian Chow, postdoctoral associate in Boyden's lab.

"Multicolor silencing dramatically increases the complexity with which you can study neural circuits," says co-author Xue Han, another postdoctoral researcher in Boyden's lab. "We will use these tools to parse out the neural mechanisms of cognition."

Determining whether Arch and Mac are safe and effective in monkeys will be a critical next step towards the potential use of these optical silencing tools in humans. Boyden plans to use these 'super silencers' to examine the neural circuits of cognition and emotion and to find targets in the brain that, when shut down, could relieve pain and treat epilepsy.

His group continues to mine the natural world for new and even more powerful tools to manipulate brain cell activity--tools that he hopes will empower scientists to explore neural circuits in ways never before possible.

Additional funding for this research was provided by the National Institutes of Health, the McGovern Institute Neurotechnology Program at MIT, the Department of Defense, the National Alliance for Research on Schizophrenia and Depression, the Alfred P. Sloan Foundation, Jerry and Marge Burnett, the Society for Neuroscience, the MIT Media Lab, the Benesse Foundation, the Wallace H. Coulter Foundation and the Helen Hay Whitney Foundation.

Bobbie Mixon | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>