Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sign Language Study Helps Explain How Human Brain Learns Language Unlike Any Other Species

30.04.2010
A new study from the University of Rochester finds that there is no single advanced area of the human brain that gives it language capabilities above and beyond those of any other animal species.

Instead, humans rely on several regions of the brain, each designed to accomplish different primitive tasks, in order to make sense of a sentence. Depending on the type of grammar used in forming a given sentence, the brain will activate a certain set of regions to process it, like a carpenter digging through a toolbox to pick a group of tools to accomplish the various basic components that comprise a complex task.

"We're using and adapting the machinery we already have in our brains," said study coauthor Aaron Newman. "Obviously we're doing something different [from other animals], because we're able to learn language unlike any other species. But it's not because some little black box evolved specially in our brain that does only language, and nothing else."

The team of brain and cognitive scientists – comprised of Newman (now at Dalhousie University after beginning the work as a postdoctoral fellow at the University of Rochester), Elissa Newport (University of Rochester), Ted Supalla (University of Rochester), Daphne Bavelier (University of Rochester), and Peter Hauser (Rochester Institute of Technology) - published their findings in the latest edition of the journal Proceedings of the National Academies of Science.

To determine whether different brain regions were used to decipher sentences with different types of grammar, the scientists turned to American Sign Language for a rare quality it has.

Some languages (English, for example) rely on the order of words in a sentence to convey the relationships between the sentence elements. When an English speaker hears the sentence "Sally greets Bob," it's clear from the word order that Sally is the subject doing the greeting and Bob is the object being greeted, not vice versa.

Other languages (Spanish, for example) rely on inflections, such as suffixes tacked on to the ends of words, to convey subject-object relationships, and the word order can be interchangeable.

American Sign Language has the helpful characteristic that subject-object relationships can be expressed in either of the two ways – using word order or inflection. Either a signer can sign the word "Sally" followed by the words "greets" and "Bob" (a construction in which word order dictates meaning), or the signer can use physical inflections such as moving hands through space or signing on one side of the body to convey the relationship between elements. For the study, the team formed 24 sentences and expressed each of those sentences using both methods.

Videos of the sentences being signed were then played for the subjects of the experiment, native signers who were lying on their backs in MRI (magnetic resonance imaging) machines with coils around their heads to monitor which areas of the brain were activated when processing the different types of sentences.

The study found that there are, in fact, distinct regions of the brain that are used to process the two types of sentences: those in which word order determined the relationships between the sentence elements, and those in which inflection was providing the information.

In fact, Newman said, in trying to understand different types of grammar, humans draw on regions of the brain that are designed to accomplish primitive tasks that relate to the type of sentence they are trying to interpret. For instance, a word order sentence draws on parts of the frontal cortex that give humans the ability to put information into sequences, while an inflectional sentence draws on parts of the temporal lobe that specialize in dividing information into its constituent parts, the study demonstrated.

"These results show that people really ought to think of language and the brain in a different way, in terms of how the brain capitalizes on some perhaps preexisting computational structures to interpret language," Newport said.

Aside from providing perspective on how language abilities might have evolved in humans, the scientists' findings could perhaps eventually find applications in medicine, according to Newport. For instance, it could prove valuable in assessing how best to teach language to a person with brain damage in certain areas but not others, such as a stroke victim.

Contact: Alan Blank
alan.blank@rochester.edu
585-275-2671
About the University of Rochester
The University of Rochester (www.rochester.edu) is one of the nation’s leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by its Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Nursing, and the Memorial Art Gallery.

Alan Blank | EurekAlert!
Further information:
http://rochester.edu/news/show.php?id=3610

Further reports about: Brain EXPLAIN Human vaccine Language Science TV Sign language Unique species

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>