Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sigmon's Study Examines Caffeine Withdrawal

05.05.2009
Ever miss your daily cup of coffee and subsequently get a pounding headache?

According to reports from consumers of coffee and other caffeinated products, caffeine withdrawal is often characterized by a headache, fatigue, feeling less alert, less energetic and experiencing difficulty concentrating.

Stacey Sigmon, Ph.D., research associate professor of psychiatry at the University of Vermont College of Medicine and colleagues at Johns Hopkins School of Medicine sought to investigate the biological mechanisms of caffeine withdrawal in a paper published recently in the online edition of the scientific journal Psychopharmacology.

They looked at brain electrical activity and blood flow during caffeine withdrawal to examine what was taking place physiologically during acute caffeine abstinence, including the likely mechanism underlying the common "caffeine withdrawal headache."

The group examined caffeine's effects in a double-blind study, which involved the administration of caffeine and placebo capsules. Each participant's response to the caffeine or placebo was measured using three different measures — brain electrical activity via electroencephalogram (EEG); blood flow velocity in the brain via ultrasound; and participants' self-reports of subjective effects via questionnaires.

The team demonstrated that stopping daily caffeine consumption produces changes in cerebral blood flow velocity and quantitative EEG that are likely related to the classic caffeine withdrawal symptoms of headache, drowsiness and decreased alertness. More specifically, acute caffeine abstinence increased brain blood flow, an effect that may account for commonly reported withdrawal headaches. Acute caffeine abstinence also produced changes in EEG (increased theta rhythm) that has previously been linked to the common withdrawal symptom of fatigue. Consistent with this, volunteers reported increases in measures of "tired," "fatigue," "sluggish" and "weary." Overall, these findings provide the most rigorous demonstration to date of physiological effects of caffeine withdrawal.

The researchers also discovered a provocative and somewhat unexpected finding — that there were no net benefits associated with chronic caffeine administration.

"In addition to looking at caffeine withdrawal, this rigorous design also permitted comparison of chronic caffeine maintenance with chronic placebo maintenance, which provides unique information about the extent to which there are net beneficial effects of daily caffeine administration," said Sigmon, who is first author on the study. "In contrast to what most of us coffee lovers would think, our study showed no difference between when the participant was maintained on chronic placebo and when the participant was stabilized on chronic caffeine administration. What this means is that consuming caffeine regularly does not appear to produce any net beneficial effects, based on the measures we examined."

Co-authors on the study, which was a collaboration between Sigmon and Roland Griffiths, Ph.D., at the Johns Hopkins University School of Medicine, include Griffiths, as well as Ronald Herning, Warren Better and Jean Cadet of the National Institute on Drug Abuse's Molecular Neuropsychiatry section.

Jennifer Nachbur | EurekAlert!
Further information:
http://www.uvm.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>