Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sierra Nevada freshwater runoff could drop 26 percent by 2100, UC study finds

02.09.2014

The cause? Increased high-elevation plant growth fueled by climate warming

Freshwater runoff from the Sierra Nevada may decrease by as much as one-quarter by 2100 due to climate warming on the high slopes, according to scientists at UC Irvine and UC Merced.

Accelerated plant growth at higher elevations caused by increasing temperatures would trigger more water absorption and evaporation, accounting for the projected runoff declines, the researchers add.

A diminished river flow will only add to the burden of providing resources to the thirsty farms and homes that rely on it. The state is currently experiencing a severe drought, and some reservoirs and groundwater levels are at all-time lows.

The study findings appear this week in the early online edition of Proceedings of the National Academy of Sciences.

"Scientists have recognized for a while that something like this was possible, but no one had been able to quantify whether it could be a big effect," said UCI professor of Earth system science Michael L. Goulden of the decreased runoff. "It's clear that this could be a big effect of climate warming and that water managers need to recognize and plan for the possibility of increased water losses from forest evaporation."

According to the researchers, runoff from mountain ranges is vulnerable to temperature hikes that lengthen growing seasons and result in more vegetation growth at high elevations. Snow-dominated mountain forests that are currently dormant in winter with cold temperatures have lower vegetative density and less evapotranspiration than downslope forests in the snow-rain transition zone, which have year-round growing seasons. Evapotranspiration is the combination of water evaporation from land and the loss of water through plant-leaf transpiration.

Goulden and UC Merced's Roger C. Bales investigated the potential influence of a warming climate on evapotranspiration in the Kings River Basin in California's Sierra Nevada and found resulting changes in the amount of freshwater mountain runoff available to serve surrounding communities.

They gauged water vapor emission rates and combined those measurements with remote sensing imagery to determine relationships among elevation, climate and evapotranspiration. According to the data, freshwater mountain runoff is highly sensitive to expanded vegetation growth.

The authors found that greater vegetation density at higher elevations in the Kings basin with the 4.1 degrees Celsius warming projected by climate models for 2100 could boost basin evapotranspiration by as much as 28 percent, with a corresponding 26 percent decrease in river flow.

Further, the relationships among evapotranspiration, temperature and vegetation density were similar across a broader area of the Sierra Nevada, suggesting that the impact of climate change on evapotranspiration and freshwater availability could be widespread.

"Most people have heard about the giant forests around Yosemite and Sequoia national parks, but these areas have not been a focus of this type of research. Understanding of Sierran hydrology has improved recently with the National Science Foundation's Critical Zone Observatory, and data collected there allowed us to look at the problem from several perspectives," Goulden said. "All of our analyses pointed in the same direction: An upslope expansion of forest with warming would cause a large increase in evaporative water loss and lead to reduced water availability."

###

Bales is a professor of engineering and director of the Sierra Nevada Research Institute at UC Merced. The research was supported by the NSF, through the Southern Sierra Critical Zone Observatory (EAR-0725097) and a major research instrumentation grant (EAR-0619947), and by the U.S. Department of Energy's Terrestrial Ecosystem Science program.

About the University of California, Irvine: Founded in 1965, UCI is ranked first among U.S. universities under 50 years old by the London-based Times Higher Education and is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Currently under the leadership of interim Chancellor Howard Gillman, UCI has more than 28,000 students and offers 192 degree programs. Located in one of the world's safest and most economically vibrant communities, it's Orange County's second-largest employer, contributing $4.3 billion annually to the local economy.

Media access: UC Irvine maintains an online directory of faculty available as experts to the media at today.uci.edu/resources/experts.php. Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

Laura Rico | Eurek Alert!
Further information:
http://www.uci.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>