Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sierra Nevada freshwater runoff could drop 26 percent by 2100, UC study finds

02.09.2014

The cause? Increased high-elevation plant growth fueled by climate warming

Freshwater runoff from the Sierra Nevada may decrease by as much as one-quarter by 2100 due to climate warming on the high slopes, according to scientists at UC Irvine and UC Merced.

Accelerated plant growth at higher elevations caused by increasing temperatures would trigger more water absorption and evaporation, accounting for the projected runoff declines, the researchers add.

A diminished river flow will only add to the burden of providing resources to the thirsty farms and homes that rely on it. The state is currently experiencing a severe drought, and some reservoirs and groundwater levels are at all-time lows.

The study findings appear this week in the early online edition of Proceedings of the National Academy of Sciences.

"Scientists have recognized for a while that something like this was possible, but no one had been able to quantify whether it could be a big effect," said UCI professor of Earth system science Michael L. Goulden of the decreased runoff. "It's clear that this could be a big effect of climate warming and that water managers need to recognize and plan for the possibility of increased water losses from forest evaporation."

According to the researchers, runoff from mountain ranges is vulnerable to temperature hikes that lengthen growing seasons and result in more vegetation growth at high elevations. Snow-dominated mountain forests that are currently dormant in winter with cold temperatures have lower vegetative density and less evapotranspiration than downslope forests in the snow-rain transition zone, which have year-round growing seasons. Evapotranspiration is the combination of water evaporation from land and the loss of water through plant-leaf transpiration.

Goulden and UC Merced's Roger C. Bales investigated the potential influence of a warming climate on evapotranspiration in the Kings River Basin in California's Sierra Nevada and found resulting changes in the amount of freshwater mountain runoff available to serve surrounding communities.

They gauged water vapor emission rates and combined those measurements with remote sensing imagery to determine relationships among elevation, climate and evapotranspiration. According to the data, freshwater mountain runoff is highly sensitive to expanded vegetation growth.

The authors found that greater vegetation density at higher elevations in the Kings basin with the 4.1 degrees Celsius warming projected by climate models for 2100 could boost basin evapotranspiration by as much as 28 percent, with a corresponding 26 percent decrease in river flow.

Further, the relationships among evapotranspiration, temperature and vegetation density were similar across a broader area of the Sierra Nevada, suggesting that the impact of climate change on evapotranspiration and freshwater availability could be widespread.

"Most people have heard about the giant forests around Yosemite and Sequoia national parks, but these areas have not been a focus of this type of research. Understanding of Sierran hydrology has improved recently with the National Science Foundation's Critical Zone Observatory, and data collected there allowed us to look at the problem from several perspectives," Goulden said. "All of our analyses pointed in the same direction: An upslope expansion of forest with warming would cause a large increase in evaporative water loss and lead to reduced water availability."

###

Bales is a professor of engineering and director of the Sierra Nevada Research Institute at UC Merced. The research was supported by the NSF, through the Southern Sierra Critical Zone Observatory (EAR-0725097) and a major research instrumentation grant (EAR-0619947), and by the U.S. Department of Energy's Terrestrial Ecosystem Science program.

About the University of California, Irvine: Founded in 1965, UCI is ranked first among U.S. universities under 50 years old by the London-based Times Higher Education and is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Currently under the leadership of interim Chancellor Howard Gillman, UCI has more than 28,000 students and offers 192 degree programs. Located in one of the world's safest and most economically vibrant communities, it's Orange County's second-largest employer, contributing $4.3 billion annually to the local economy.

Media access: UC Irvine maintains an online directory of faculty available as experts to the media at today.uci.edu/resources/experts.php. Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

Laura Rico | Eurek Alert!
Further information:
http://www.uci.edu

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>