Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sibling study could lead to better treatments for inherited form of colon cancer

05.11.2008
Utah researchers 1 step closer to understanding how certain forms of colon cancer develop

Researchers at Huntsman Cancer Institute (HCI) believe they may be one step closer to understanding how certain forms of colon cancer develop.

In a study using siblings who have been diagnosed with colon cancer, scientists discovered similarities on a region of a particular chromosome, referred to as 7q31. Researchers believe that piece of genetic material may be causing a subset of colon cancers that run in families.

"It's those genetic similarities in colon cancer patients that would suggest that region holds a gene that's causing colon cancer," says Deborah Neklason, PhD and lead investigator on the study. Referred to as the Cancer Genetics Network "Sibling Pair Project," Neklason and other researchers analyzed the genetic material of 82 siblings. In addition to the discovery of a potential location of a cancer-causing gene, the research also shows siblings who share this genetic region tend to develop cancer 3.8 years earlier than siblings who do not. The study findings are published in the November 1, 2008 issue of Cancer Research.

Scientists already know roughly 30 percent of all colon cancers are a direct result of an inherited gene, but less than five percent of these genes have been identified. "Those cases where the genes have been identified tend to be pretty dramatic," says Neklason. "Colon cancer develops at young ages and the cases are easier to figure out. It's the other 25 percent that's tough. These cases are more like sporadic colon cancer and are much more subtle," she says.

The findings could ultimately lead to a better understanding of the cellular process that results in cancer and its progression. It will likely pave the way for more targeted research that could someday result in a screening test to detect genetic forms of colon cancer.

Kathy Wilets | EurekAlert!
Further information:
http://www.hci.utah.edu
http://www.huntsmancancer.org

Further reports about: Chromosome Sibling Sibling Pair Project colon cancer genetic material

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>