Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sibling study could lead to better treatments for inherited form of colon cancer

Utah researchers 1 step closer to understanding how certain forms of colon cancer develop

Researchers at Huntsman Cancer Institute (HCI) believe they may be one step closer to understanding how certain forms of colon cancer develop.

In a study using siblings who have been diagnosed with colon cancer, scientists discovered similarities on a region of a particular chromosome, referred to as 7q31. Researchers believe that piece of genetic material may be causing a subset of colon cancers that run in families.

"It's those genetic similarities in colon cancer patients that would suggest that region holds a gene that's causing colon cancer," says Deborah Neklason, PhD and lead investigator on the study. Referred to as the Cancer Genetics Network "Sibling Pair Project," Neklason and other researchers analyzed the genetic material of 82 siblings. In addition to the discovery of a potential location of a cancer-causing gene, the research also shows siblings who share this genetic region tend to develop cancer 3.8 years earlier than siblings who do not. The study findings are published in the November 1, 2008 issue of Cancer Research.

Scientists already know roughly 30 percent of all colon cancers are a direct result of an inherited gene, but less than five percent of these genes have been identified. "Those cases where the genes have been identified tend to be pretty dramatic," says Neklason. "Colon cancer develops at young ages and the cases are easier to figure out. It's the other 25 percent that's tough. These cases are more like sporadic colon cancer and are much more subtle," she says.

The findings could ultimately lead to a better understanding of the cellular process that results in cancer and its progression. It will likely pave the way for more targeted research that could someday result in a screening test to detect genetic forms of colon cancer.

Kathy Wilets | EurekAlert!
Further information:

Further reports about: Chromosome Sibling Sibling Pair Project colon cancer genetic material

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>