Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shoulder function not fully restored after surgery

18.01.2011
Shoulder motion after rotator cuff surgery remains significantly different when compared to the patient's opposite shoulder, according to a Henry Ford Hospital study.

In a study that updated prior findings, researchers used X-rays providing a 3D view of motion of the arm bone in relation to the shoulder blade, to compared motion in the shoulders of 22 patients who had arthroscopic surgical repair of tendon tears and no symptoms in their other shoulders. An earlier study looked at 14 patients.

Researchers analyzed the motion of both shoulders at three, 12 and 24 months after surgery, looking at changes in shoulder motion and shoulder strength.

"Although patient satisfaction is generally very high after surgical repair of a torn rotator cuff, the data suggest that long-term shoulder function - in particular, shoulder strength and dynamic joint stability - may not be fully restored in every patient," says Michael Bey, Ph.D., director of Herrick Davis Motion Analysis Lab at Henry Ford Hospital.

Dr. Bey presents the results Sunday at the Orthopaedic Research Society's annual meeting in Long Beach, Calif.

"We found that the motion pattern of the repaired shoulder is significantly different than the patient's opposite shoulder," Dr. Bey says. "These differences in shoulder motion seem to persist over time in some patients."

According to the American Academy of Orthopaedic Surgeons, rotator cuff tears are a common cause of pain and disability among adults, especially among those over age 40. The rotator cuff is comprised of four muscles and several tendons that create a covering around the top of the upper arm bone. The rotator cuff holds the bone in and enables the arm to rotate.

The rotator cuff can be torn from a single injury but most tears result from overuse of the muscles and tendons over years. Those at especially high risk are those who engage in repetitive overhead motions. Common treatments include anti-inflammatory medication, steroid injections, physical therapy and surgery.

Dr. Bey says the findings suggest that restoring normal joint mechanics may not be necessary to achieve a satisfactory clinical outcome.

"Our study suggests that surgery doesn't necessarily restore normal shoulder strength or normal shoulder motion," he says. "However, patient satisfaction is very high after surgery due in part because it relieves pain and discomfort."

The study was done using a high-speed biplane X-ray system, one of only three in the country, which allows researchers to measure the position of bones and joints in the body during motion to within half a millimeter.

"The biplane X-ray system allows us to investigate subtle nuances of shoulder function that cannot be detected with conventional laboratory techniques," Dr. Bey says.

"What further complicates our understanding of rotator cuff tears is that we have also shown that there are subtle, yet important differences in shoulder function between the dominant and non-dominant shoulder of healthy volunteers. These clinical studies are aiding in our understanding of both the origin and treatment of rotator cuff tears."

The study was funded by the U.S. National Institutes of Health and Henry Ford Hospital.

David Olejarz | EurekAlert!
Further information:
http://www.hfhs.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>