Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What do short messages and earthquakes have in common?

19.10.2010
According to a new study, communication via short messaging can be described with the same mathematical laws used for describing the occurrence of earthquakes, strong rainfalls and forest fires, the electrical firing of neurons, or even stock trading.

The occurrence of these events is apparently chaotic but they obey the same statistical principles, a German-Chinese team of scientists around Jürgen Kurths from the Potsdam Institute for Climate Impact Research (PIK) reports in the current issue of the Proceedings of the National Academy of Sciences (PNAS).

A typical conversation using short messages starts with an initial message followed by a series of mutual sending and replying. The time between two such events shows the same typical pattern as an earthquake followed by a series of aftershocks.

Whereas intervals between two initial messages are usually long and erratic, intervals between replies are comparatively shorter – much like those between aftershocks following an earthquake.

Similar principles can be found in many other types of human communication like e-mail exchanges or internet chats. It is expected that precise mathematical descriptions of these events will allow for optimizing communication infrastructures in future. “Based on these results, we should even be able to derive ways for improving phone-line availability or the allocation of internet bandwidths,” says Jürgen Kurths.

The mathematical methods used by the researchers to investigate short messaging behaviour are also used in climate research to reveal the principles underlying the occurrence of extreme climate and weather events and to improve their predictability. Moreover, the principles which underlie modern communication are essential building blocks for computer simulations of social systems. Such simulations are currently developed at PIK.

Article: Ye Wu, Changsong Zhou, Jinghua Xiao, Jürgen Kurths, Hans Joachim Schellnhuber: Evidence for a bimodal distribution in human communication. Proceedings of the National Academy of Sciences USA (2010), doi:10.1073/pnas.101314010710.1073

Supplemental material: http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013140107/-/DCSupplemental

For further information please contact the PIK press office:

Phone: +49 331 288 2507
E-mail: press@pik-potsdam.de

Uta Pohlmann | idw
Further information:
http://www.pik-potsdam.de
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013140107/-/DCSupplemental

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>