Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shining a light on memory

02.06.2014

It's all about strengthened connections between neurons, NIH-funded study confirms

Using a flash of light, scientists have inactivated and then reactivated a memory in genetically engineered rats. The study, supported by the National Institutes of Health, is the first cause-and-effect evidence that strengthened connections between neurons are the stuff of memory.


Scientists have switched a fear memory on and off in genetically-engineered rats -- using a flash of light. Optogenetic technology produced this first cause-and-effect evidence that memories are formed by strengthened connections between neurons.

Credit: Roberto Malinow, M.D., Ph.D., of the University of California, San Diego

"Our results add to mounting evidence that the brain represents a memory by forming assemblies of neurons with strengthened connections, or synapses, explained Roberto Malinow, M.D., Ph.D., of the University of California, San Diego (UCSD), a grantee of the NIH's National Institute of Mental Health (NIMH). "Further, the findings suggest that weakening synapses likely disassembles neuronal assemblies to inactivate a memory."

Malinow, Roger Tsien, Ph.D., a grantee of NIH's National Institute on Neurological Disorders and Stroke (NINDS), and other UCSD colleagues, report June 1, 2014 in the journal Nature on their findings using cutting edge optical/gene-based technology.

... more about:
»Health »LTP »NIH »NIMH »UCSD »evidence »long-term »memories »neurons »synapses »targeting

"Beyond potential applications in disorders of memory deficiency, such as dementia, this improved understanding of how memory works may hold clues to taking control of runaway emotional memories in mental illnesses, such as post-traumatic stress disorder," said NIMH director Thomas R. Insel, M.D.

Neuroscientists have long suspected that strengthened connections between neurons – called long-term potentiation (LTP) – underlies memory formation, But proof had remained elusive, until now.

The Malinow team proved it by detecting LTP when forming a memory, removing the memory with a process known to reverse LTP, and then bringing the memory back via LTP – all by modifying the strength of synapses in a memory circuit.

To gain the precise control needed to show such a cause-and-effect relationship, Malinow's team turned to one of neuroscience's most powerful new tools: optogenetics. It adapts the same cellular machinery that allows primitive organisms like algae to be controlled by light from the sun to control specific brain circuit components instantly with a laser – even in a behaving animal.

In conventional rodent fear conditioning experiments, a tone is paired with a foot shock to induce a fear memory of the tone. If the memory is active, the animal freezes and shows reduced reward-seeking behaviors when it hears the tone. Instead of the tone, Malinow's team paired the shock with direct optogenetic stimulation, lighting up a specific group of neurons in a known auditory fear memory circuit.

Such precise targeting wasn't possible with earlier electrical stimulation techniques. "It's just a jungle in the brain – too many nerve cells coming through in any one place," explained Malinow.

By varying the pattern of optogenetic stimulation, the researchers were able to strengthen connections between neurons in the circuit by promoting LTP or weaken the connections by promoting a countervailing process called long-term depression (LTD). This made it possible to readily form a fear memory, remove it, and then bring it back.

Moreover, upon closer optogenetic probing in postmortem brains, the targeted circuit neurons showed telltale changes in sensitivity of brain chemical messenger systems. These changes confirmed the hypothesized role of strengthening and weakening of synaptic connections in the switching on-and-off of the memory.

"We have shown that the damaging products that build up in the brains of Alzheimer's disease patients can weaken synapses in the same way that we weakened synapses to remove a memory," said Malinow. "So this line of research could suggest ways to intervene in the process."

"In addition to eliminating any doubt about a link between LTP/LTD with memories, this work highlights the staggering potential of precision targeting and circuit manipulation for alleviating maladaptive memories," said project officer Chiiko Asanuma,Ph.D., of the NIMH Division of Neuroscience and Basic Behavioral Science.

"This work provides a nice demonstration of how the field of neuroscience is being transformed by the types of technologies that are at the heart of President Obama's BRAIN Initiative," said Edmund Talley, Ph.D., program director at the NINDS.

Jules Asher | Eurek Alert!
Further information:
http://www.nimh.nih.gov/index.shtml

Further reports about: Health LTP NIH NIMH UCSD evidence long-term memories neurons synapses targeting

More articles from Studies and Analyses:

nachricht Risk-taking propensity changes, especially in young adulthood and in older age
29.01.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Designing a pop-up future
27.01.2016 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>