Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shining a light on memory

02.06.2014

It's all about strengthened connections between neurons, NIH-funded study confirms

Using a flash of light, scientists have inactivated and then reactivated a memory in genetically engineered rats. The study, supported by the National Institutes of Health, is the first cause-and-effect evidence that strengthened connections between neurons are the stuff of memory.


Scientists have switched a fear memory on and off in genetically-engineered rats -- using a flash of light. Optogenetic technology produced this first cause-and-effect evidence that memories are formed by strengthened connections between neurons.

Credit: Roberto Malinow, M.D., Ph.D., of the University of California, San Diego

"Our results add to mounting evidence that the brain represents a memory by forming assemblies of neurons with strengthened connections, or synapses, explained Roberto Malinow, M.D., Ph.D., of the University of California, San Diego (UCSD), a grantee of the NIH's National Institute of Mental Health (NIMH). "Further, the findings suggest that weakening synapses likely disassembles neuronal assemblies to inactivate a memory."

Malinow, Roger Tsien, Ph.D., a grantee of NIH's National Institute on Neurological Disorders and Stroke (NINDS), and other UCSD colleagues, report June 1, 2014 in the journal Nature on their findings using cutting edge optical/gene-based technology.

... more about:
»Health »LTP »NIH »NIMH »UCSD »evidence »long-term »memories »neurons »synapses »targeting

"Beyond potential applications in disorders of memory deficiency, such as dementia, this improved understanding of how memory works may hold clues to taking control of runaway emotional memories in mental illnesses, such as post-traumatic stress disorder," said NIMH director Thomas R. Insel, M.D.

Neuroscientists have long suspected that strengthened connections between neurons – called long-term potentiation (LTP) – underlies memory formation, But proof had remained elusive, until now.

The Malinow team proved it by detecting LTP when forming a memory, removing the memory with a process known to reverse LTP, and then bringing the memory back via LTP – all by modifying the strength of synapses in a memory circuit.

To gain the precise control needed to show such a cause-and-effect relationship, Malinow's team turned to one of neuroscience's most powerful new tools: optogenetics. It adapts the same cellular machinery that allows primitive organisms like algae to be controlled by light from the sun to control specific brain circuit components instantly with a laser – even in a behaving animal.

In conventional rodent fear conditioning experiments, a tone is paired with a foot shock to induce a fear memory of the tone. If the memory is active, the animal freezes and shows reduced reward-seeking behaviors when it hears the tone. Instead of the tone, Malinow's team paired the shock with direct optogenetic stimulation, lighting up a specific group of neurons in a known auditory fear memory circuit.

Such precise targeting wasn't possible with earlier electrical stimulation techniques. "It's just a jungle in the brain – too many nerve cells coming through in any one place," explained Malinow.

By varying the pattern of optogenetic stimulation, the researchers were able to strengthen connections between neurons in the circuit by promoting LTP or weaken the connections by promoting a countervailing process called long-term depression (LTD). This made it possible to readily form a fear memory, remove it, and then bring it back.

Moreover, upon closer optogenetic probing in postmortem brains, the targeted circuit neurons showed telltale changes in sensitivity of brain chemical messenger systems. These changes confirmed the hypothesized role of strengthening and weakening of synaptic connections in the switching on-and-off of the memory.

"We have shown that the damaging products that build up in the brains of Alzheimer's disease patients can weaken synapses in the same way that we weakened synapses to remove a memory," said Malinow. "So this line of research could suggest ways to intervene in the process."

"In addition to eliminating any doubt about a link between LTP/LTD with memories, this work highlights the staggering potential of precision targeting and circuit manipulation for alleviating maladaptive memories," said project officer Chiiko Asanuma,Ph.D., of the NIMH Division of Neuroscience and Basic Behavioral Science.

"This work provides a nice demonstration of how the field of neuroscience is being transformed by the types of technologies that are at the heart of President Obama's BRAIN Initiative," said Edmund Talley, Ph.D., program director at the NINDS.

Jules Asher | Eurek Alert!
Further information:
http://www.nimh.nih.gov/index.shtml

Further reports about: Health LTP NIH NIMH UCSD evidence long-term memories neurons synapses targeting

More articles from Studies and Analyses:

nachricht Pathways to Deep Decarbonization in Germany
02.09.2015 | Wuppertal Institut für Klima, Umwelt, Energie GmbH

nachricht Risk of financial crisis higher than previously estimated
02.09.2015 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>