Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding light on southpaws

26.04.2012
Sports data help confirm theory explaining left-handed minority in general population

Lefties have always been a bit of a puzzle. Representing only 10 percent of the general human population, left-handers have been viewed with suspicion and persecuted across history. The word "sinister" even derives from "left or left-hand."

Two Northwestern University researchers now report that a high degree of cooperation, not something odd or sinister, plays a key role in the rarity of left-handedness. They developed a mathematical model that shows the low percentage of lefties is a result of the balance between cooperation and competition in human evolution.

Professor Daniel M. Abrams and his graduate student Mark J. Panaggio -- both right-handers -- are the first to use real-world data (from competitive sports) to test and confirm the hypothesis that social behavior is related to population-level handedness.

The results are published today (April 25) in The Journal of the Royal Society Interface.

"The more social the animal -- where cooperation is highly valued -- the more the general population will trend toward one side," said Abrams, an assistant professor of engineering sciences and applied mathematics at the McCormick School of Engineering and Applied Science. "The most important factor for an efficient society is a high degree of cooperation. In humans, this has resulted in a right-handed majority."

If societies were entirely cooperative everyone would be same-handed, Abrams said. But if competition were more important, one could expect the population to be 50-50. The new model can predict accurately the percentage of left-handers in a group -- humans, parrots, baseball players, golfers -- based on the degrees of cooperation and competition in the social interaction.

The model helps to explain our right-handed world now and historically: the 90-10 right-handed to left-handed ratio has remained the same for more than 5,000 years. It also explains the dominance of left-handed athletes in many sports where competition can drive the number of lefties up to a disproportionate level.

Cooperation favors same-handedness -- for sharing the same tools, for example. Physical competition, on the other hand, favors the unusual. In a fight, a left-hander in a right-handed world would have an advantage.

Abrams and Panaggio turned to the world of sports for data to support their balance of cooperation and competition theory. Their model accurately predicted the number of elite left-handed athletes in baseball, boxing, hockey, fencing and table tennis -- more than 50 percent among top baseball players and well above 10 percent (the general population rate) for the other sports.

On the other hand, the number of successful left-handed PGA golfers is very low, only 4 percent. The model also accurately predicted this.

"The accuracy of our model's predictions when applied to sports data supports the idea that we are seeing the same effect in human society," Abrams said.

Handedness, the preference for using one hand over the other, is partially genetic and partially environmental. Identical twins, who share exactly the same genes, don't always share the same handedness.

"As computers and simulation become more widespread in science, it remains important to create understandable mathematical models of the phenomena that interest us, such as the left-handed minority," Abrams said. "By discarding unnecessary elements, these simple models can give us insight into the most important aspects of a problem, sometimes even shedding light on things seemingly outside the domain of math."

The paper is titled "A Model Balancing Cooperation and Competition Can Explain Our Right-Handed World and the Dominance of Left-Handed Athletes."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>