Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharks in Acidic Waters Avoid Smell of Food

11.09.2014

The increasing acidification of ocean waters caused by rising atmospheric carbon dioxide levels could rob sharks of their ability to sense the smell of food, a new study suggests.

Elevated carbon dioxide levels impaired the odor-tracking behavior of the smooth dogfish, a shark whose range includes the Atlantic Ocean off the eastern United States. Adult sharks significantly avoided squid odor after swimming in a pool of water treated with carbon dioxide.


Danielle Dixson

The smooth dogfish, a shark whose range includes the Atlantic Ocean off the eastern United States, could lose their ability to sense the smell of food if climate change if ocean acidification continues its current pace.

The carbon dioxide concentrations tested are consistent with climate forecasts for midcentury and 2100. The study suggests that predator-prey interactions in nature could be influenced by elevated carbon dioxide concentrations of ocean waters.

“The sharks’ tracking behavior and attacking behavior were significantly reduced,” said Danielle Dixson, an assistant professor in the School of Biology at the Georgia Institute of Technology in Atlanta. “Sharks are like swimming noses, so chemical cues are really important for them in terms of finding food.”

The study is the first time that sharks’ ability to sense the odor of their food has been tested under conditions that simulate the acidity levels expected in the oceans by the turn of the century. The work supports recent research from Dixson and other research groups showing that ocean acidification impairs sensory functions and alters the behavior of aquatic organisms.

The study was published online in a recent edition of the journal Global Change Biology and was sponsored by the National Science Foundation (NSF).

Carbon dioxide released into the atmosphere is absorbed into ocean waters, where it dissolves and lowers the pH of the water. Acidic waters affect fish behavior by disrupting a specific receptor in the nervous system, called GABAA, which is present in most marine organisms with a nervous system. When GABAA stops working, neurons stop firing properly.

Dixson’s previous research has shown that fish living on coral reefs where carbon dioxide seeps from the ocean floor were less able to detect predator odor than fish from normal coral reefs. Study co-author Philip Munday, from James Cook University in Australia, has shown in previous work that a tiny coral reef predator fish, the dottyback, also loses interest in food in waters that simulate ocean acidification conditions forecast for the future.

In the experimental part of the new study, conducted at Woods Hole Oceanographic Institute in Cape Cod, Massachusetts, 24 sharks from local waters were studied in a 10-meter-long flume. The flume resembled two lanes of a swimming pool. Odor from a squid was pumped down one lane of the flume, while normal seawater was pumped down the other side.

Sharks tend to prefer one side of a tank over the other, so researchers first assessed each sharks’ side preference. Then the research team ran control experiments under normal ocean conditions to ensure that the sharks were tracking the food cue. Under present-day water conditions, sharks adjusted their position in the flume to spend a greater amount of time on the side containing the squid odor plume, regardless of the individual shark’s natural side preference.

Next, sharks spent five days in holding pools of three different carbon dioxide concentrations: local water concentration today (405 ± 26 microatmospheres (µatms) CO2), projected midcentury concentration (741 ± 22 µatms CO2), projected concentration for 2100 (1,064 ± 17 µatms CO2). Sharks were not fed while in the holding pools to ensure they were motivated to track a food odor. The sharks were then released into the flume and their tracking behavior was observed.

Sharks from the normal seawater pool and mid-level carbon dioxide pool spent more than 60 percent of their time in the water stream containing the food stimulus. Sharks from the high carbon dioxide pool spent less than 15 percent of their time in the water stream containing the food stimulus. These sharks avoided the odor plume even when it was on the side of the flume that the sharks’ naturally prefer.

The food odor stream was pumped through bricks to make the plume flow better and to give the sharks a target to attack. Sharks treated under mid and high CO2 conditions also reduced their attack behavior.

“They significantly reduced their bumps and bites on the bricks compared to the control group,” Dixson said. “It’s like they’re uninterested in their food.”

Exposure to carbon dioxide did not significantly affect the sharks’ overall activity levels. The gill rate of the sharks – an indicator of heart rate – held in different water conditions was not significantly different, suggesting that differences in stress to the sharks was not likely affecting the experimental results.

Dixson noted that the study was carried out under laboratory conditions and thus does not allow for the full evaluation of the potential effects of ocean acidification on predatory abilities of the smooth dogfish.

Live food was not used as the odor cue because sharks can detect prey with their other senses, such as hearing and their ability to detect electrical impulses. By using an odor cue, the researchers were focusing on only the chemical sensing of sharks. Dixson’s future work will explore how sharks’ other senses might be affected by ocean acidification.

Sharks are an ancient species, and in the past have adapted to ocean acidification conditions projected for the future. But they’ve never had to adapt to changes happening as quickly as they are today.

“It’s the rate of change that’s happening that’s concerning. Sharks have never had to deal with it this fast,” Dixson said.

This research is supported by the National Science Foundation (NSF) under award number NSF-IOS-0843440. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agency.

CITATION: Danielle L. Dixson, et al., “Odor tracking in sharks is reduced under future ocean acidification conditions.” (Global Change Biology, August 2014) http://onlinelibrary.wiley.com/doi/10.1111/gcb.12678/full

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA
@GTResearchNews

Media Relations Contacts: Brett Israel (@btiatl) (404-385-1933) (brett.israel@comm.gatech.edu) or John Toon (404-894-6986) (jtoon@gatech.edu)

Writer: Brett Israel

Brett Israel | newswise

Further reports about: Biology CO2 Food GABAA Waters concentration concentrations conditions dioxide levels odor sharks

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>