Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharks in Acidic Waters Avoid Smell of Food

11.09.2014

The increasing acidification of ocean waters caused by rising atmospheric carbon dioxide levels could rob sharks of their ability to sense the smell of food, a new study suggests.

Elevated carbon dioxide levels impaired the odor-tracking behavior of the smooth dogfish, a shark whose range includes the Atlantic Ocean off the eastern United States. Adult sharks significantly avoided squid odor after swimming in a pool of water treated with carbon dioxide.


Danielle Dixson

The smooth dogfish, a shark whose range includes the Atlantic Ocean off the eastern United States, could lose their ability to sense the smell of food if climate change if ocean acidification continues its current pace.

The carbon dioxide concentrations tested are consistent with climate forecasts for midcentury and 2100. The study suggests that predator-prey interactions in nature could be influenced by elevated carbon dioxide concentrations of ocean waters.

“The sharks’ tracking behavior and attacking behavior were significantly reduced,” said Danielle Dixson, an assistant professor in the School of Biology at the Georgia Institute of Technology in Atlanta. “Sharks are like swimming noses, so chemical cues are really important for them in terms of finding food.”

The study is the first time that sharks’ ability to sense the odor of their food has been tested under conditions that simulate the acidity levels expected in the oceans by the turn of the century. The work supports recent research from Dixson and other research groups showing that ocean acidification impairs sensory functions and alters the behavior of aquatic organisms.

The study was published online in a recent edition of the journal Global Change Biology and was sponsored by the National Science Foundation (NSF).

Carbon dioxide released into the atmosphere is absorbed into ocean waters, where it dissolves and lowers the pH of the water. Acidic waters affect fish behavior by disrupting a specific receptor in the nervous system, called GABAA, which is present in most marine organisms with a nervous system. When GABAA stops working, neurons stop firing properly.

Dixson’s previous research has shown that fish living on coral reefs where carbon dioxide seeps from the ocean floor were less able to detect predator odor than fish from normal coral reefs. Study co-author Philip Munday, from James Cook University in Australia, has shown in previous work that a tiny coral reef predator fish, the dottyback, also loses interest in food in waters that simulate ocean acidification conditions forecast for the future.

In the experimental part of the new study, conducted at Woods Hole Oceanographic Institute in Cape Cod, Massachusetts, 24 sharks from local waters were studied in a 10-meter-long flume. The flume resembled two lanes of a swimming pool. Odor from a squid was pumped down one lane of the flume, while normal seawater was pumped down the other side.

Sharks tend to prefer one side of a tank over the other, so researchers first assessed each sharks’ side preference. Then the research team ran control experiments under normal ocean conditions to ensure that the sharks were tracking the food cue. Under present-day water conditions, sharks adjusted their position in the flume to spend a greater amount of time on the side containing the squid odor plume, regardless of the individual shark’s natural side preference.

Next, sharks spent five days in holding pools of three different carbon dioxide concentrations: local water concentration today (405 ± 26 microatmospheres (µatms) CO2), projected midcentury concentration (741 ± 22 µatms CO2), projected concentration for 2100 (1,064 ± 17 µatms CO2). Sharks were not fed while in the holding pools to ensure they were motivated to track a food odor. The sharks were then released into the flume and their tracking behavior was observed.

Sharks from the normal seawater pool and mid-level carbon dioxide pool spent more than 60 percent of their time in the water stream containing the food stimulus. Sharks from the high carbon dioxide pool spent less than 15 percent of their time in the water stream containing the food stimulus. These sharks avoided the odor plume even when it was on the side of the flume that the sharks’ naturally prefer.

The food odor stream was pumped through bricks to make the plume flow better and to give the sharks a target to attack. Sharks treated under mid and high CO2 conditions also reduced their attack behavior.

“They significantly reduced their bumps and bites on the bricks compared to the control group,” Dixson said. “It’s like they’re uninterested in their food.”

Exposure to carbon dioxide did not significantly affect the sharks’ overall activity levels. The gill rate of the sharks – an indicator of heart rate – held in different water conditions was not significantly different, suggesting that differences in stress to the sharks was not likely affecting the experimental results.

Dixson noted that the study was carried out under laboratory conditions and thus does not allow for the full evaluation of the potential effects of ocean acidification on predatory abilities of the smooth dogfish.

Live food was not used as the odor cue because sharks can detect prey with their other senses, such as hearing and their ability to detect electrical impulses. By using an odor cue, the researchers were focusing on only the chemical sensing of sharks. Dixson’s future work will explore how sharks’ other senses might be affected by ocean acidification.

Sharks are an ancient species, and in the past have adapted to ocean acidification conditions projected for the future. But they’ve never had to adapt to changes happening as quickly as they are today.

“It’s the rate of change that’s happening that’s concerning. Sharks have never had to deal with it this fast,” Dixson said.

This research is supported by the National Science Foundation (NSF) under award number NSF-IOS-0843440. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agency.

CITATION: Danielle L. Dixson, et al., “Odor tracking in sharks is reduced under future ocean acidification conditions.” (Global Change Biology, August 2014) http://onlinelibrary.wiley.com/doi/10.1111/gcb.12678/full

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA
@GTResearchNews

Media Relations Contacts: Brett Israel (@btiatl) (404-385-1933) (brett.israel@comm.gatech.edu) or John Toon (404-894-6986) (jtoon@gatech.edu)

Writer: Brett Israel

Brett Israel | newswise

Further reports about: Biology CO2 Food GABAA Waters concentration concentrations conditions dioxide levels odor sharks

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>