Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Are sharks color blind?

New study shows that sharks have only one type of cone cell in their eyes, suggesting they are color blind

Sharks are unable to distinguish colors, even though their close relatives rays and chimaeras have some color vision, according to new research by Dr. Nathan Scott Hart and colleagues from the University of Western Australia and the University of Queensland in Australia.

Their study shows that although the eyes of sharks function over a wide range of light levels, they only have a single long-wavelength-sensitive cone* type in the retina and therefore are potentially totally color blind. Hart and team's findings are published online in Springer's journal Naturwissenschaften – The Science of Nature.

“This new research on how sharks see may help to prevent attacks on humans and assist in the development of fishing gear that may reduce shark bycatch in long-line fisheries. Our study shows that contrast against the background, rather than colour per se, may be more important for object detection by sharks. This may help us to design long-line fishing lures that are less attractive to sharks as well as to design swimming attire and surf craft that have a lower visual contrast to sharks and, therefore, are less ‘attractive’ to them,” said Prof. Hart.

Sharks are efficient predators and their evolutionary success is thought to be due in part to an impressive range of sensory systems, including vision. To date, it is unclear whether sharks have color vision, despite well-developed eyes and a large sensory brain area dedicated to the processing of visual information. In an attempt to demonstrate whether or not sharks have color vision, Hart and colleagues used a different technique - microspectrophotometry - to identify cone visual pigments in shark retinas and measure their spectral absorbance.

They looked at the retinas of 17 shark species caught in a variety of waters in both Queensland and Western Australia. Rod cells were the most common type of photoreceptor in all species. In ten of the 17 species, no cone cells were observed. However, cones were found in the retinae of 7 species of shark from three different families and in each case only a single type of long-wavelength-sensitive cone photoreceptor was present. Hart and team's results provide strong evidence that sharks possess only a single cone type, suggesting that sharks may be cone monochromats, and therefore potentially totally color blind.

The authors conclude: "While cone monochromacy on land is rare, it may be a common strategy in the marine environment. Many aquatic mammals − whales, dolphins and seals − also possess only a single, green-sensitive cone type. It appears that both sharks and marine mammals may have arrived at the same visual design by convergent evolution, in other words, they acquired the same biological trait in unrelated lineages."

*There are two main types of photoreceptor cells in the retina of the eye. Rod cells are very sensitive to light and allow night vision. Cone cells also react to light but are less sensitive to it. Eyes with different spectral types of cone cells can distinguish different colors. Rod cells cannot tell colors apart.

Renate Bayaz | alfa
Further information:

Further reports about: Rod cells aquatic mammals color vision cone cells cone monochromacy

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>