Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensitive Persons’ Perception Moderates Responses Based On Culture

05.05.2010
Building on previous brain imaging research that revealed cultural influences play a role in neural activation during perception, Arthur Aron, Ph.D., Professor of Psychology at Stony Brook University, and colleagues, completed a study that suggests individuals who are highly sensitive have cognitive responses that appear to not be influenced by culture at all.

Reported in advance online in Social Cognitive and Affective Neuroscience, and scheduled for print in the June issue, the study could serve as a foundation for the direction of study in the emerging field of cultural neuroscience.

“Our data suggest that some categories of individuals, based on their natural traits, are less influenced by their cultural context than others,” says Dr. Aron. He adds that the study is the first to analyze how a basic temperament/personality trait, called sensory processing sensitivity (SPS), interacts with culture and neural responses.

SPS is characterized by sensitivity to both internal and external stimuli, including social and emotional cues. Scientists estimate that something like high sensitivity is found in approximately 20 percent of more than 100 species, from fruit flies and fish to canines and primates and has evolved as a particular survival strategy that differs from the majority. The standard measure in humans is the Highly Sensitive Person (HSP) Scale, previously developed by Dr. Aron and his wife, Dr. Elaine Aron. An example of one item on the HSP scale is “do you seem to be aware of subtleties in your environment.”

Dr. Aron says those who score high on the scale report being easily overwhelmed when too much is happening, startle easily, are conscientious, enjoy the arts more, and have a lower pain threshold. They are more emotionally reactive and more affected by the environment compared to those who score low on the scale.

The researchers measured SPS in 10 East Asian individuals temporarily in the U.S. and and 10 Americans of Western-European ancestry. In a previous study, these same 20 individuals had undergone brain functional magnetic resonance imaging (fMRI) while performing a cognitive task of comparing the length of lines inside boxes. The participants’ responses to the task tested their perception of the independence versus interdependence of objects as the fMRI measured the neural basis of their responses.

The major finding of that study was that the frontal-parietal brain region (see Figure) known to be engaged during attention-demanding tasks was more activated for East Asians when making judgments ignoring context, not their specialty, but was more activated for Americans when making judgments when they had to take context into account, not their specialty. This discovery, says Dr. Aron, illustrated that each group engaged this attention system more strongly during a task more difficult for them because it is not generally supported by their cultural context. That is, even when doing a simple, abstract cognitive task, culture influences perception.

In the SPS study, Dr. Aron and colleagues took the brain activations in these two groups from the previous study and considered them in light of the SPS scores of the same individuals. They found SPS as a trait yielded a very clear pattern of results:

“The influence of culture on effortful perception was especially strong for those who scored low on the scale measuring sensitivity, but for those who scored high on the measure (highly sensitive individuals), there was no cultural difference at all,” says Dr. Aron. Regarding the fMRI, Dr Aron adds: “Culture did not influence the degree of activation of highly sensitive individuals’ brains when doing the two kinds of perceptual tasks used in the previous study. Also, how much they identified with their culture had no effect. It was as if, for them, culture was not an influence on their perception.”

Dr. Aron emphasized that the new research suggests that characteristics possessed by high SPS individuals, such as being emotionally reactive or conscientious, actually flow out of or are side effects of the overriding feature of processing information more thoroughly than low SPS individuals.

While the results showed a clear, statistically significant connection between SPS, cognitive processing, and culturally-based thinking, Dr. Aron indicates that the small numbers of participants does not rule out the possibility that these results could be sample specific, so conclusions must be taken as preliminary and only as suggestive. Replications of the study and larger sample sizes, he adds, would help to further the research.

Co-authors of the study titled, “Temperament trait of sensory processing sensitivity moderates cultural differences in neural response,” include: Sarah Ketay, Ph.D., Mount Sinai School of Medicine; Trey Heddan, Ph.D., Massachusetts Institute of Technology (MIT); Elaine N. Aron, Ph.D., Stony Brook University; Hazel Rose Markus, Ph.D., Stanford University, and John D.E. Gabrieli, MIT.

The study was funded in part by the National Institutes of Health.

Donna Bannon | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>