Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensitive laser instrument could aid search for life on Mars

16.10.2008
Minuscule traces of cells can be detected in a mineral likely present on Mars, a new study shows. The results, obtained using a technique developed at the U.S. Department of Energy's Idaho National Laboratory, could help mission scientists choose Martian surface samples with the most promise for yielding signs of life.

INL's instrument blasts off tiny bits of mineral and looks for chemical signatures of molecules commonly found in cells. While other methods require extensive sample handling, this analysis relies on a "point-and-shoot" laser technique that preserves more of the rock and reduces contamination risk. In the current online issue of the peer-reviewed Geomicrobiology Journal, the researchers report they could detect biomolecules at concentrations as low as 3 parts per trillion.

High sensitivity is crucial for NASA's search for life on Mars, says INL scientist Jill Scott, whose team collaborated with researchers at the University of Montana-Missoula on the study.

"The worst-case scenario is a false negative," Scott says. "If you're just missing stuff, that would be devastating."

While other techniques also have achieved parts-per-trillion sensitivity, they often require scientists to first extract the organic cell remnants from the mineral. This type of preparation can use up large amounts of sample and potentially introduce contamination.

INL's method is based on a technique called laser desorption mass spectroscopy. By focusing a laser beam on a spot less than one-hundredth the width of a pencil point, the researchers can knock microscopic fragments off the mineral. Those fragments react with organic molecules to form detectable charged particles called ions. The team can then study the ion patterns for signatures that might be specific to biomolecules.

Typically, this method would require the organic molecules to be embedded in a synthetic matrix that encourages ion formation. But the INL team simply relies on the rock to act as the matrix, eliminating the need for sample preparation.

"We thought, what can the rock do for you?" Scott says. "You don't want to damage the sample more than you have to. You'd like to just shoot it directly."

With funding from NASA's Astrobiology program, the researchers have done previous studies showing that minerals like halite and jarosite yield distinct ion patterns when organic molecules are present. This time, they tried thenardite, a compound thought to be part of the Martian surface. Because thenardite is left behind when lakes dry up, its presence could signify the past existence of water -- and hence life.

The team tested thenardite samples taken from the evaporated Searles Lake bed in California. They also created artificial thenardite samples that contained traces of stearic acid, which is left behind by dead cells, and glycine, the simplest amino acid used by organisms on Earth. In all cases, the researchers found a distinct ion pattern that did not appear for thenardite alone, suggesting they had detected a signature for the biomolecules.

The team also measured the sensitivity of its instrument for the first time. By testing more and more dilute artificial samples, they found they could detect the stearic acid signature at levels as low as 3 parts per trillion. In fact, the signatures became even more distinct as concentration dropped, presumably because more ion-producing matrix surrounded each biomolecule.

While the instrument is too big to send into space, it could potentially be used for analysis if NASA brings Martian samples back to Earth. The INL study also could help determine which samples should be collected, based on how likely they are to show signs of life. Thenardite and jarosite look the most promising, Scott says, while hematite -- an iron-based compound common on the Martian surface -- has yielded poor results so far.

"The wider the variety of minerals we test, the larger the suite we can target on Mars," says collaborator Nancy Hinman, a geochemist at the University of Montana-Missoula.

The team's next step is to improve the laser on its machine. Right now, the instrument is ionizing only about 10 percent of the available biomolecules in the sample. If the remaining biomolecules could be ionized with a better laser, Scott says, the detection level could increase tenfold.

Roberta Kwok | EurekAlert!
Further information:
http://www.inl.gov

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>