Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What she sees in you -- facial attractiveness explained

25.08.2009
When it comes to potential mates, women may be as complicated as men claim they are, according to psychologists.

"We have found that women evaluate facial attractiveness on two levels -- a sexual level, based on specific facial features like the jawbone, cheekbone and lips, and a nonsexual level based on overall aesthetics," said Robert G. Franklin, graduate student in psychology working with Reginald Adams, assistant professor of psychology and neurology, Penn State.

"At the most basic sexual level, attractiveness represents a quality that should increase reproductive potential, like fertility or health."

On the nonsexual side, attractiveness can be perceived on the whole, where brains judge beauty based on the sum of the parts they see.

"But up until now, this (dual-process) concept had not been tested," Franklin explained. The researchers report the findings of their tests in the current issue of the Journal of Experimental Social Psychology.

To study how women use these methods of determining facial attractiveness, the psychologists showed fifty heterosexual female college students a variety of male and female faces. They asked the participants to rate what they saw as both hypothetical dates and hypothetical lab partners on a scale of one to seven. The first question was designed to invoke a sexual basis of determining attractiveness, while the second was geared to an aesthetic one. This part of the experiment served as a baseline for next phase.

The psychologists then presented the same faces to another set of fifty heterosexual female students. Some of these faces, however, were split horizontally, with the upper and lower halves shifted in opposite directions. The scientists asked these participants to rate the overall attractiveness of the split and whole faces on the same scale.

By dividing the faces in half and disrupting the test subjects' total facial processing, the researchers believed that women would rely more on specific facial features to determine attractiveness. They thought that this sexual route would come into play particularly when the participants saw faces that were suited as hypothetical dates rather than lab partners. The study showed exactly that.

"The whole face ratings of the second group correlated better with the nonsexual 'lab partner' ratings of the first group." Franklin said. With the faces intact, the participants could evaluate them on an overall, nonsexual level.

"The split face ratings of the second group also correlated with the nonsexual ratings of the first group when the participants were looking at female faces," he added. "The only change occurred when we showed the second group split, male faces. These ratings correlated better with the 'hypothetical date' ratings of the first group."

The bottom line is that, at a statistically significant level, splitting the faces in half made the women rely on a purely sexual strategy of processing male faces. The study verifies that these two ways of assessing facial appeal exist and can be separated for women.

"We do not know whether attractiveness is a cultural effect or just how our brains process this information," Franklin admitted. "In the future, we plan to study how cultural differences in our participants play a role in how they rate these faces. We also want to see how hormonal changes women experience at different stages in the menstrual cycle affect how they evaluate attractiveness on these two levels."

Researchers have long known that women's biological routes of sexual attraction derive from an instinctive reproductive desire, relying on estrogen and related hormones to regulate them. The overall aesthetic approach is a less reward-based function, driven by progesterone.

How this complex network of hormones interacts and is channeled through the conscious brain and the human culture that shapes it is a mystery. "It is a complicated picture," Franklin added. "We are trying to find what features in the brain are at play, here."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>