Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing the Glass as Half Full: Taking a New Look at Cognition and Aging

17.07.2014

From a cognitive perspective, aging is typically associated with decline. As we age, it may get harder to remember names and dates, and it may take us longer to come up with the right answer to a question.

But the news isn’t all bad when it comes to cognitive aging, according to a set of three articles in the July 2014 issue of Perspectives in Psychological Science.

Plumbing the depths of the available scientific literature, the authors of the three articles show how several factors — including motivation and crystallized knowledge — can play important roles in supporting and maintaining cognitive function in the decades past middle age.

Motivation Matters

Lab data offer evidence of age-related declines in cognitive function, but many older adults appear to function quite well in their everyday lives. Psychological scientist Thomas Hess of North Carolina State University sets forth a motivational framework of “selective engagement” to explain this apparent contradiction.

If the cognitive cost of engaging in difficult tasks increases as we age, older adults may be less motivated to expend limited cognitive resources on difficult tasks or on tasks that are not personally relevant to them. This selectivity, Hess argues, may allow older adults to improve performance on the tasks they do choose to engage in, thereby helping to account for inconsistencies between lab-based and real-world data.

Prior Knowledge Brings Both Costs and Benefits

Episodic memory – memory for the events of our day-to-day lives – seems to decline with age, while memory for general knowledge does not. Researchers Sharda Umanath and Elizabeth Marsh of Duke University review evidence suggesting that older adults use prior knowledge to fill in gaps caused by failures of episodic memory, in ways that can both hurt and help overall cognitive performance. While reliance on prior knowledge can make it difficult to inhibit past information when learning new information, it can also make older adults more resistant to learning new erroneous information.

According to Umanath and Marsh, future research should focus on better understanding this compensatory mechanism and whether it can be harnessed in developing cognitive interventions and tools.

Older Adults Aren’t Necessarily Besieged By Fraud

Popular writers and academics alike often argue that older adults, due to certain cognitive differences, are especially susceptible to consumer fraud. Psychological scientists Michael Ross, Igor Grossmann, and Emily Schryer of the University of Waterloo in Canada review the available data to examine whether incidences of consumer fraud are actually higher among older adults. While there isn’t much research that directly answers this question, the research that does exist suggests that older adults may be less frequent victims than other age groups.

Ross, Grossmann, and Schryer find no evidence that older adults are actually more vulnerable to fraud, and they argue that anti-fraud policies should be aimed at protecting consumers of all ages.

Anna Mikulak | Eurek Alert!
Further information:
http://www.psychologicalscience.org/index.php/news/releases/seeing-the-glass-as-half-full-taking-a-new-look-at-cognition-and-aging.html

Further reports about: Adults Aging Cognition Science argue cognitive differences evidence function selective

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>