Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeds of Gulf Dead Zones Are Draining from U.S. Farms

26.11.2010
If you want to grow a dead zone in the Gulf of Mexico, you first need to plant a seed in the rich farmland of the upper Mississippi River basin.

A study recently published in the Journal of Environmental Quality by a team from Cornell University and the University of Illinois-Urbana found that tile drainage systems in upper Mississippi farmlands – from southwest Minnesota to Iowa, Illinois, Indiana and Ohio – are the biggest contributors of nitrogen runoff into the Gulf.

That runoff has been identified as a major contributor to “seasonal hypoxia” or dead zones in which nitrogen fertilized algae blooms, depletes oxygen and suffocates other life forms over thousands of square miles each summer.

“Given the pivotal role of tile drainage in transporting fertilizer nitrogen from agricultural fields to streams and rivers, we need to consider some form of regulation if we expect to reverse hypoxia in the Gulf of Mexico,” said Laurie Drinkwater, associate professor of horticulture and co-author of the paper.

To estimate nitrogen inputs and outputs, the researchers constructed a database that spanned from 1997 to 2006 and included data on crops, livestock, fertilizer, human populations and other information for 1,768 counties. The database also included nitrate concentrations and their flow into streams and rivers from 153. Computer modeling revealed that the dominant source of nitrogen loss into the Mississippi came from fertilized cornfields on tile-drained watersheds in the upper Mississippi River basin.

Drinkwater said solutions include installing wetlands in areas where tiles drain to filter the water and fertilizing fields in the spring instead of the fall. Also, she added, “we know that we are losing nitrogen in the period between cash crops when nothing is growing in the field. If we plant winter cover crops and diversify crop rotations, nitrogen losses could be reduced quite a lot.”

The Mississippi River basin covers 40 percent of the continental United States and is the largest producer of corn and soybeans in the world.

Mark David, a biogeochemist at the University of Illinois, is the paper's lead author. It was also co-authored by Gregory McIsaac at the University of Illinois, and was funded by the National Science Foundation.

John Carberry | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>