Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sediba’s ribcage and feet were not suitable for running

11.04.2013
Researchers at Wits University in South Africa, including Peter Schmid from the University of Zurich, have described the anatomy of a single early hominin in six new studies. Australopithecus sediba was discovered near Johannesburg in 2008. The studies in Science demonstrate how our two million year old ancestor walked, chewed and moved.

The fossils discovered four years ago in Malapa near Johannesburg show a mixture of primitive features of australopiths and advanced features of later human species. The researchers led by Prof Lee Berger of Wits University are therefore of the opinion that the new species is currently the best candidate for a direct ancestor of our own genus Homo.


Reconstruction of Au. Sediba.
Lee Berger; University of the Witwatersrand


2D reconstruction by Peter Schmid of the 2 million year old Australopithecus sediba.
Lee Berger; University of the Witwatersrand

Researchers are now presenting new studies, including those of Peter Schmid, who taught and did research at the University of Zurich until he retired. Also involved were UZH students Nakita Frater, Sandra Mathews and Eveline Weissen.

Schmid has described the remains of Au. sediba’s thorax. “They show a narrow upper ribcage, as the large apes have such as orang-utans, chimpanzees and gorillas”, says Peter Schmid. The human thorax on the other hand is uniformly cylindrical. Along with the largely complete remnants of the pectoral girdle, we see the morphological picture of a conical ribcage with a raised shoulder joint, which looks like a permanent shrug. The less well-preserved elements of the lower thorax on the other hand indicate a slim waist, similar to that of a human being.

Conical ribcage makes it difficult to swing arms when walking

The narrow upper thorax of apes enables them to move the shoulder blade, which is important for climbing and brachiation in trees. Its conical shape makes it difficult, however, to swing their arms when walking upright or running, plus they were a similar length to an ape’s. This is why Schmid assumes that Au. sediba was not able to walk or run on both feet as well as humans. “They probably couldn’t run over longer distances, especially as they were unable to swing their arms, which saves energy”, says Schmid.

An examination of the lower extremities shows a heel, metatarsus, knee, hips and back, which are unique and unprecedented. Sediba must have walked with feet turned sharply inwards. This inward turn distinguishes it from other australopiths. The conclusion to be drawn is that our early ancestors were able to move around in a different way.

Arms for climbing and brachiation

Au. sediba was an experienced climber. This is shown by the remains of the upper arm, radius, ulna, scapula, clavicle and fragment of sternum found in Malapa. These clearly belong to a single individual, which is unique in the entire previously known fossil record of the earliest hominins. With the exception of the hand bones described above, the upper extremity is exceptionally original. Au. sediba, like all the other representatives of the Australopithecus genus, had arms that were suitable for climbing as well as possibly for brachiation. Perhaps this capability was even more pronounced than has been assumed for this genus hitherto.
Differences from Australopithecus afarensis

Based on the dental crowns the researchers assume that Au. sediba does not belong phylogenetically to the eastern African australopiths but is closer to Au. africanus and thus forms a southern African sister group. This has an impact on our modern understanding of the evolution of early hominins from the late Pliocene. As such, Au. sediba and maybe even Au. africanus were not descended from Au. afarensis.

The lower jaw of the female skeleton was also examined along with previously unknown incisors and premolars. As noted already on the skull and other areas of the skeleton, the mandibular remains show similarities with other australopiths. They differ, however, in size and shape as well as in ontogenetic growth changes of Au. africanus. These results support the hypothesis that Au. sediba is taxonomically different from Au. africanus. In the relevant differences the parts of the lower jaw appear most to resemble those representatives of early Homo.

An analysis of the cervical, thoracic, lumbar and sacral region of the spinal column shows that Au. sediba had the same number of lumbar vertebrae as modern man. The strong hollow back suggests that he was more advanced in this area than Au. africanus and may be more likely compared with Homo erectus.

The new studies show a unique image of a human species with a mosaic-like physique. Some body parts are similar to those of earlier and others to those of later hominins. “The numerous similarities with Homo erectus suggest that Au. sediba represents the most appropriate early form of the genus Homo”, says Peter Schmid. The previous candidates are too fragmentary to be capable of occupying this position.

Bibliography:

Peter Schmid, Steven E. Churchill, Shahed Nalla, Eveline Weissen, Kristian J. Carlson, Darryl J. de Ruiter, Lee R. Berger. Mosaic Morphology in the Thorax of Australopithecus sediba. Science April 12. 2013. Doi: 10.1126/science.1234598
Contacts:
Peter Schmid
Tel. 001 865-230-1832 (until 13.4.2013)
Tel. +411 371 23 45
Email: smidi@aim.uzh.ch

Beat Müller | Universität Zürich
Further information:
http://www.mediadesk.uzh.ch

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>