Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking for Secrets to Drug Addiction in Our Blood

22.09.2010
PNNL and Air Force 59th to develop better tests for drug abuse and dependence

A new collaboration between the Department of Energy's Pacific Northwest National Laboratory and the Air Force's 59th Medical Wing hopes to improve on drug tests for illicit drug use and abuse. Not only are the researchers looking for a better indicator of current or past use, but they'd like to be able to identify people prone to abusing drugs in the first place.

Funded by the Department of Defense, the $850,000 two-year study will lay the foundation for future work to determine who might be susceptible to hydrocodone. Initially, the collaboration will map out drug breakdown products, proteins and other compounds that healthy bodies make in response to the prescription painkiller hydrocodone.

"We want to enhance the prevention, diagnosis and treatment of drug addiction. Our military deserves the best care we can give them," said Lt. Col. (Dr.) Vikhyat Bebarta, a research physician in the 59th Medical Wing at Lackland Air Force Base near San Antonio, Texas. Bebarta will be co-leading the study with biochemist Josh Adkins of PNNL.

The results will likely extend beyond the military. "Any tools for drug addiction that come out of this study could also be used by the general public," said Adkins.

Just as some genes confer a susceptibility to alcoholism, the team hopes to find some indicator of susceptibility to dependence on painkillers such as hydrocodone. Instead of a gene, though, the researchers hope to find a difference in how a susceptible person responds to the drug, compared to a nonsusceptible one. If such an indicator exists in blood, urine or saliva, not only would it improve our understanding of the biological response to hydrocodone, but tests that reveal the indicator could be developed.

Dependency tendency

The painkiller hydrocodone is one of the most abused drugs in the U.S. Its use, abuse and addictive potential pose special concern for the armed forces, whose members suffer trauma more often than the average civilian. Hydrocodone is an opioid closely related to the opiate morphine. Both military and civilian doctors are prescribing hydrocodone more often, making it more accessible for people to misuse and abuse.

The rising prescription rate and greater availability has likely contributed to an increase in number of patients in treatment. Admission for drug abuse treatment programs for hydrocodone and related opiates more than quadrupled between 1997 and 2007, according to a 2007 report from the National Admissions to Substance Abuse Treatment Services. (This does not include the opiate heroin, which remained stable over that time.)

Knowing if a military member is misusing or abusing hydrocodone is essential to national security and to the safety of military personnel. In 2005, the Department of Defense found that 7.3% of active duty personnel across all branches of the military had used analgesics including hydrocodone without a medical need in the previous year.

Finding users

Doctors have several tests to determine who is using hydrocodone or other illicit drugs, but they are inadequate. The simplest -- a screening questionnaire -- is not definitive. And current blood or urine tests for hydrocodone only determine whether the drug been used in the last few hours or days. In addition, several drugs cross react in the blood test, making them unreliable.

More important, there is no current screening test for recent or past hydrocodone use. Psychotherapeutics rank right behind marijuana as the most commonly abused drugs among the military and civilians, and hydrocodone and other pain relievers are the most popular of the psychotherapeutics.

To determine if someone had been using hydrocodone in the recent past, the researchers will take snapshots of changes that can be detected in blood or urine. "We already know how it works in the brain, so we will focus on the body. Hydrocodone has a physiological response on the whole body to fight pain," said Bebarta.

The first part of the study seeks to determine the baseline for what hydrocodone does to normal healthy subjects. The researchers will look for changes to a variety of body systems after healthy volunteers take the drug. The systems they're looking at include the pain response, inflammation, and stress -- all known to be involved in hydrocodone's effect.

"Partnering with the 59th Medical Wing takes advantage of the strengths in each group," said PNNL biologist Karin Rodland, chief scientist for biomedical research and co-investigator on the team.

Because the Air Force researchers have extensive expertise in toxicology and drug metabolism at Wilford Hall Medical Center in San Antonio, they will perform the part of the study that looks at how hydrocodone gets metabolized. Backed by PNNL's expertise in the field of proteomics, the PNNL team will check for changes in about 2000 different protein levels using state-of-the-art instruments in EMSL, DOE's Environmental Molecular Sciences Laboratory on the PNNL campus.

The baseline studies will take two to three years to complete. Armed with a baseline, the researchers will be able to conduct other experiments with hydrocodone-dependent patients to look for indicators that identify those who are most likely to abuse it.

Eventually, the team's goal is for a clear understanding of a dependent patient's complete physiological response to opioids. They are hopeful they will find a susceptibility marker and discover new ways to personalize opioid pain medicine. "That would require a systems biology level of understanding of a person's response to opiate," said Rodland, "but we hope we get the chance to try."

EMSL, the Environmental Molecular Sciences Laboratory located at Pacific Northwest National Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science, Biological and Environmental Research program. EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. EMSL’s technical experts and suite of custom and advanced instruments are unmatched. Its integrated computational and experimental capabilities enable researchers to realize fundamental scientific insights and create new technologies.EMSL's Facebook page.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,700 staff, has an annual budget of nearly $1.1 billion, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, LinkedIn and Twitter.

Mary Beckman | Newswise Science News
Further information:
http://www.pnl.gov/news/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>