Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching in Space and Minds: Research Suggests Underlying Link

10.09.2008
New research from Indiana University has found evidence that how we look for things, such as our car keys or umbrella, could be related to how we search for more abstract needs, such as words in memory or solutions to problems.

"Common underlying search mechanisms may exist that drive our behavior in many different domains," said IU cognitive scientist Peter Todd. "If how people search in space is similar to how they search in their minds, it's a very exciting prospect to try to find the deep, underlying roots of human behavior that may be common to varied domains."

Lead author Thomas Hills worked with Todd and fellow IU cognitive scientist Robert Goldstone in designing experiments to explore the search processes their study participants used in both spatial and abstract settings. The studies revolved around two search modes -- exploitation, where seekers stay with a place or task until they have gotten appreciable benefit from it, and exploration, where seekers move quickly from one place or one task to another, looking for a new set of resources to exploit. They then examined whether an initial search, in this case for resources in space, primed the mode used in the subsequent, more abstract search.

"We asked the question -- are the same mechanisms that let simpler organisms search in space for food related to how we search for things in our mind, for concepts or ideas," Todd said. "Our conclusion is that they seem to be linked at some level, which is what our priming experiment suggests."

Some people might be more inclined to one search mode or the other, having a lesser ability to focus on a given task or difficulty letting go of an idea. An extreme form of the exploratory cognitive style would be someone with attention deficit hyperactivity disorder. An extreme form of the exploitive cognitive style would be someone with obsessive compulsive disorder.

These new findings, published in the latest issue of Psychological Science, have possible implications related to other recent work on brain chemistry and cognitive disorders. Exploratory foraging -- actual or abstract -- appears to be linked to decreases in the brain chemical dopamine. Many problems related to attention -- including ADHD, drug addiction, some forms of autism and schizophrenia -- have been linked to such a dopamine deficit. The authors suggest that computer foraging, such as that used for their experiments, could reveal individual differences in underlying cognitive search style, and could even be used to manipulate that style. If that were possible, it could perhaps lead to therapies for such cognitive disorders.

MODERN TOOLS -- A COMPUTERIZED SEARCH GAME AND BOARD GAME -- USED TO EXAMINE ANCIENT COGNITIVE SEARCH PROCESSES

The scientists had a group of volunteers use icons to "forage" in a computerized world, moving around until they stumbled upon a hidden supply of resources (akin to food or water), then deciding if and when to move on, and in which direction. The scientists tracked their movements.

The volunteers explored two very different worlds. Some foraged in a "clumpy" world, which had fewer but richer supplies of resources. Others explored a "diffuse" environment, which had many more, but much smaller, supplies. The idea was to "prime" the optimal foraging strategy for each world. Those in a diffuse world would in theory do better giving up on any one spot quickly and moving on, and navigating to avoid any retracing. Those in a clumpy world would do better to stay put in one area for an extended period, exploiting the rich lodes of resources before returning to the exploratory mode.

The volunteers then participated in a more abstract, intellectual search task -- a computerized game akin to Scrabble. They received a set of letters and had to search their memory for as many words as they could make with those letters. As with the board game, they could also choose to trade in all their letters for a new set whenever they wanted to.

The researchers found that the human brain appears capable of using exploration or exploitation search modes depending on the demands of the task, but it also has a tendency through "priming" to continue searching in the same way even if in a different domain, such as when switching from a spatial to an abstract task.

They also found that individuals were consistent in their cognitive style -- the most persevering foragers for resources in space were also the most persevering Scrabble players. Everybody should be able to switch back and forth, Todd said, but the people who have a tendency to use one mode more in one task have a similar tendency to use that mode more in other tasks.

The study was supported by the National Institutes of Health, U.S. Department of Education, National Science Foundation and Indiana University.

For a copy of the study, contact Catherine West at cwest@psychologicalscience.org or visit http://www.psychologicalscience.org/media/.

Hills was a research scientist at IU when this study was conducted. He now is a research scientist at the University of Basel, Switzerland, and can be reached at 041 (0) 61 267 3521 and thomas.hills@unibas.ch. Todd can be reached at 812-855-3914 and pmtodd@indiana.edu.

"Search in External and Internal Spaces: Evidence for Generalized Cognitive Search Processes," Psychological Science. August, vol. 19 (8).

Tracy James | Newswise Science News
Further information:
http://www.indiana.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>