Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for Life Suggests Solar Systems More Habitable than Ours

04.12.2012
Scattered around the Milky Way are stars that resemble our own sun—but a new study is finding that any planets orbiting those stars may very well be hotter and more dynamic than Earth.

That’s because the interiors of any terrestrial planets in these systems are likely warmer than Earth—up to 25 percent warmer, which would make them more geologically active and more likely to retain enough liquid water to support life, at least in its microbial form.

The preliminary finding comes from geologists and astronomers at Ohio State University who have teamed up to search for alien life in a new way.

They studied eight “solar twins” of our sun—stars that very closely match the sun in size, age, and overall composition—in order to measure the amounts of radioactive elements they contain. Those stars came from a dataset recorded by the High Accuracy Radial Velocity Planet Searcher spectrometer at the European Southern Observatory in Chile.

They searched the solar twins for elements such as thorium and uranium, which are essential to Earth’s plate tectonics because they warm our planet’s interior. Plate tectonics helps maintain water on the surface of the Earth, so the existence of plate tectonics is sometimes taken as an indicator of a planet’s hospitality to life.

Of the eight solar twins they’ve studied so far, seven appear to contain much more thorium than our sun—which suggests that any planets orbiting those stars probably contain more thorium, too. That, in turn, means that the interior of the planets are probably warmer than ours.

For example, one star in the survey contains 2.5 times more thorium than our sun, said Ohio State doctoral student Cayman Unterborn. According to his measurements, terrestrial planets that formed around that star probably generate 25 percent more internal heat than Earth does, allowing for plate tectonics to persist longer through a planet’s history, giving more time for live to arise.

“If it turns out that these planets are warmer than we previously thought, then we can effectively increase the size of the habitable zone around these stars by pushing the habitable zone farther from the host star, and consider more of those planets hospitable to microbial life,” said Unterborn, who presented the results at the American Geophysical Union meeting in San Francisco this week.

“At this point, all we can say for sure is that there is some natural variation in the amount of radioactive elements inside stars like ours,” he added. “With only nine samples including the sun, we can’t say much about the full extent of that variation throughout the galaxy. But from what we know about planet formation, we do know that the planets around those stars probably exhibit the same variation, which has implications for the possibility of life.”

His advisor, Wendy Panero, associate professor in the School of Earth Sciences at Ohio State, explained that radioactive elements such as thorium, uranium, and potassium are present within Earth’s mantle. These elements heat the planet from the inside, in a way that is completely separate from the heat emanating from Earth’s core.

“The core is hot because it started out hot,” Panero said. “But the core isn’t our only heat source. A comparable contributor is the slow radioactive decay of elements that were here when the Earth formed. Without radioactivity, there wouldn’t be enough heat to drive the plate tectonics that maintains surface oceans on Earth.”

The relationship between plate tectonics and surface water is complex and not completely understood. Panero called it “one of the great mysteries in the geosciences.” But researchers are beginning to suspect that the same forces of heat convection in the mantle that move Earth’s crust somehow regulate the amount of water in the oceans, too.

“It seems that if a planet is to retain an ocean over geologic timescales, it needs some kind of crust ‘recycling system,’ and for us that’s mantle convection,” Unterborn said.

In particular, microbial life on Earth benefits from subsurface heat. Scores of microbes known as archaea do not rely on the sun for energy, but instead live directly off of heat arising from deep inside the Earth.

On Earth, most of the heat from radioactive decay comes from uranium. Planets rich in thorium, which is more energetic than uranium and has a longer half-life, would “run” hotter and remain hot longer, he said, which gives them more time to develop life.

As to why our solar system has less thorium, Unterborn said it’s likely the luck of the draw.

“It all starts with supernovae. The elements created in a supernova determine the materials that are available for new stars and planets to form. The solar twins we studied are scattered around the galaxy, so they all formed from different supernovae. It just so happens that they had more thorium available when they formed than we did.”

Jennifer Johnson, associate professor of astronomy at Ohio State and co-author of the study, cautioned that the results are preliminary. “All signs are pointing to yes—that there is a difference in the abundance of radioactive elements in these stars, but we need to see how robust the result is,” she said.

Next, Unterborn wants to do a detailed statistical analysis of noise in the HARPS data to improve the accuracy of his computer models. Then he will seek telescope time to look for more solar twins.

This research was funded by Panero’s CAREER award from the National Science Foundation.

Contact: Wendy Panero, (614) 292-6290; Panero.1@osu.edu
Cayman Unterborn, Unterborn.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Editor’s note: Panero is not attending AGU and will best be reached in her office. Unterborn is best reached by email, or through Pam Frost Gorder.

Pam Frost Gorder | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>