Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sealant gel is effective in closing spinal wounds following surgery, study finds

17.06.2011
A gel that creates a watertight seal to close surgical wounds provides a significant advance in the treatment of patients following spinal procedures, effectively sealing spinal wounds 100 percent of the time, a national multicenter randomized study led by researchers at UC Davis has found.

The substance, a polyethylene glycol (PEG) hydrogel sealant, plugs miniscule leaks in the thin sheath inside the spinal column that encloses the spinal cord, called the dura. The spinal cord and nerves float in cerebrospinal fluid inside the sheath.

The gel is an important step forward because even pinhole-sized leaks of spinal fluid can lead to another surgery and can expose the surgical wound to bacteria, increasing the risk of serious infection, including meningitis, said the study's lead author, Kee Kim. Kim is an associate professor of neurological surgery at the School of Medicine at UC Davis, chief of spinal neurosurgery and co-director of the UC Davis Spine Center.

"This substance is synthetic so there is no possibility of disease transmission but does not replace a careful surgical technique of closing the dura with the sutures," Kim said. "This sealant allows easy repair of spinal leak that may be present even after best attempts at dural closure with suturing."

The study, published online in the journal Spine, was conducted in 158 patients treated at 24 centers throughout the United States. It examined the effectiveness and safety of the sealant when used as an adjunct to suturing the dura during surgery.

The gel was approved for use in the spine by the Food and Drug Administration late in 2010.

For the study, patients were randomized in the operating room if a spinal fluid leak was seen after the dura was closed with the sutures. One hundred and two of the patients received the PEG hydrogel spinal sealant and 56 received standard care — closing the dura with additional sutures and/or fibrin glue. Participants were excluded from the study if they had prior spine surgery or were undergoing chemotherapy, radiation treatment or had other compounding health problems, such as compromised immune systems, uncontrolled diabetes or poor renal functioning.

The researchers determined whether the treatment had achieved a water-tight seal through the use of the "Valsalva maneuver," essentially attempting to expel spinal fluid through the closed dura. The study found that the patients who received the sealant had a significantly higher rate of watertight closure —100 percent —versus only 64 percent watertight closure.

The PEG gel is a liquid that quickly solidifies and forms a tight seal when it comes into contact with the body. Other sealants commonly used to create a watertight seal in spinal wounds include fibrin glue, made from other donor blood or animal matter, which is not optimal because it remains in place for only five to seven days and carries a risk of disease transmission, the researchers said.

"This is one of many clinical trials carried out at the UC Davis Spine Center that helps to provide our patients with spinal disorder not only the latest but the best available treatment" Kim said.

The UC Davis School of Medicine is among the nation's leading medical schools, recognized for its research and primary-care programs. The school offers fully accredited master's degree programs in public health and in informatics, and its combined M.D.-Ph.D. program is training the next generation of physician-scientists to conduct high-impact research and translate discoveries into better clinical care. Along with being a recognized leader in medical research, the school is committed to serving underserved communities and advancing rural health. For more information, visit UC Davis School of Medicine at medschool.ucdavis.edu.

Phyllis Brown | EurekAlert!
Further information:
http://www.ucdavis.edu

Further reports about: Medicine disease transmission immune system spinal cord spinal fluid spine

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>