Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seahorse tails could inspire new generation of robots

03.07.2015

Inspiration for the next big technological breakthrough in robotics, defense systems and biomedicine could come from a seahorse's tail, according to a new study reported Thursday in the journal Science.

The research centers on the curious shape of seahorse tails and was led by Clemson University's Michael M. Porter, an assistant professor of mechanical engineering.


The researchers designed this 3-D-printed model based on the design of a seahorse tail.

Credit: Clemson University

Seahorse tails are organized into square prisms surrounded by bony plates that are connected by joints. Many other creatures, ranging from New World monkeys to rodents, have cylindrical tails.

Researchers wanted to know whether the square-prism shape gives seahorse tails a functional advantage.

To find out, the team created a 3D-printed model that mimicked the square prism of a seahorse tail and a hypothetical version that was cylindrical. Then researchers whacked the models with a rubber mallet and twisted and bent them.

Researchers found that the square prototype was stiffer, stronger and more resilient than the circular one when crushed. The square prototype was about half as able to twist, a restriction that could prevent damage to the seahorse and give it better control when it grabs things.

Both prototypes could bend about 90 degrees, although the cylindrical version was slightly less restricted.

Porter said the seahorse tail could inspire new forms of armor. It could also lead to search-and-rescue robots that move on the ground like a snake and are able to contract to fit into tight spaces.

"We haven't gotten that far with the applications side of things yet, but we see a lot of potential with this device because it's so unique," Porter said.

The study's co-authors are Dominique Adriaens of Ghent University in Belgium; Ross L. Hatton of Oregon State University; and Marc A. Meyers and Joanna McKittrick, both of the University of California, San Diego.

Porter said that he built the models and gathered data while he was Ph.D. student at UC San Diego. He graduated in June 2014 and began work at Clemson the following August. He did all the analysis and writing for the study at Clemson.

For Porter, the next step is to build a robot using what he's learned about seahorse tails. He is in the early stages of research with two Clemson professors: Ian Walker, a professor in the Holcombe Department of Electrical Engineering and Computer Science, and Richard Blob, a biological sciences professor.

"Part of the reason I came to Clemson was this research," Porter said.

Anand Gramopadhye, dean of the College of Engineering and Science, said the study shows that Clemson is attracting some of the nation's top talent.

"Science is a premiere academic journal that is highly selective about what it publishes," he said. "The article shows the exemplary level of scholarship that Dr. Porter brings to Clemson University. I congratulate him and his team."

Science is the world's largest peer-reviewed general science journal.

For years, engineers have been taking inspiration from nature to design new technologies. The Porter-led study did that, but took things a step further. Researchers used engineering to learn more about nature.

New technologies, such as 3D printing, allow researchers "to build idealized models of natural systems to better understand their different functions," Porter said.

"This study demonstrates that engineering designs are convenient means to answer elusive biological questions when biological data are nonexistent or difficult to obtain," researchers wrote in the article. "In addition, understanding the role of mechanics in these biologically inspired designs may help engineers to develop seahorse-inspired technologies for a variety of applications in robotics, defense systems, or biomedicine."

Congratulations also came Melur K. Ramasubramanian, chair of the mechanical engineering department.

"Dr. Porter has begun to have a big impact even though he has been at Clemson for a short time," Ramasubramanian said. "We're thrilled to have him in the department of mechanical engineering."

Media Contact

Michael Porter
mmporte@clemson.edu
864-656-1307

 @ClemsonNews

http://www.clemson.edu 

Michael Porter | EurekAlert!

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>