Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SDSC-Developed Software Used in First Global Camera Trap Mammal Study

14.09.2011
TEAM Project Offers First Worldwide View of Declining Mammal Populations

A novel software system developed by researchers at the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, has been used in the first global camera trap study of mammals, which made international headlines last month by emphasizing the importance of protected areas to ensure the diversity and survival of a wide range of animal populations.

The study, led by Jorge Ahumada, an ecologist with the Tropical Ecology Assessment and Monitoring Network (TEAM) at Conservation International, documented 105 species in nearly 52,000 images from seven protected areas across the Americas, Africa, and Asia. The images, according to a recent announcement by TEAM and Conservation International, reveal a wide variety of animals in their most candid moments – from a minute mouse to the enormous African elephant as well as gorillas, cougars, giant anteaters and, surprisingly, even tourists and poachers. A gallery of images from the study can be found here.

Findings from the study – not only the first global camera trap mammal study but also the largest camera trap study of any class of animals – were published in the journal Philosophical Transactions of the Royal Society. Analysis of collected data has helped scientists confirm a key conclusion that until now was only understood through uncoordinated local study: that habitat loss and smaller reserves have a direct and detrimental impact on the diversity and survival of mammal populations.

“Our goal was to come up with a software system to address the fact that despite advances in digital image capture, field biologists still lack adequate software solutions to process and manage the increasing amount of digital information in a cost-efficient manner,” said SDSC researcher Kai Lin, who led the software project.

Jorge Ahumada, ecologist with the Tropical Ecology Assessment and Monitoring Network (TEAM) and lead author of the Global Camera Trap Mammal Study.

© Jorge Ahumada

Called DeskTEAM and developed in the context of the TEAM project, the system incorporates numerous software features and functions specifically designed for the broader camera trapping community, such as the ability to run the application locally on a laptop or desktop computer without requiring an Internet connection, as well as the ability to run on multiple operating systems. The software also has an intuitive navigational user interface which allows users to easily manage hundreds or even thousands of images; the ability to automatically extract customized metadata information from digital images to increase standardization; the availability of embedded taxonomic lists so images can be easily tagged with species identities; and the ability to export data packages consisting of data, metadata, and images in standardized formats so that they can be transferred to online data warehouses for easy archiving and dissemination. Complete details of the DeskTEAM software system can be found here.

“We have been partners with Conservation International on the TEAM project since the early days of the project, beginning in September 2007,” said Chaitan Baru, a distinguished scientist at SDSC and lead of the TEAM cyberinfrastructure effort. “A talented and dedicated group of research and development staff at SDSC helped design the comprehensive cyberinfrastructure that runs the entire global TEAM network. We developed the various cyberinfrastructure components, and the services are now hosted and run out of SDSC.”

In addition to Baru and Lin, the TEAM cyberinfrastructure team at SDSC includes Sandeep Chandra, Kate Kaya, and Choonhan Youn.

“What makes this study scientifically groundbreaking is that we created for the first time consistent, comparable information for mammals on a global scale setting an effective baseline to monitor change. By using this single, standardized methodology in the years to come and comparing the data we receive, we will be able to see trends in mammal communities and take specific, targeted action to save them,” said Ahumada. “We hope that these data contribute to a better management of protected areas and conservation of mammals worldwide, and a more widespread use of standardized camera trapping studies to monitor these critically important animals.”

The Tropical Ecology Assessment and Monitoring Network (TEAM) is a partnership that includes Conservation International, The Missouri Botanical Garden, The Smithsonian Institution and the Wildlife Conservation Society. It is partially funded by these institutions and the Gordon and Betty Moore Foundation. Local Partners in the study are: Instituto Nacional de Pesquisas da Amazonia (INPA), Conservation International Suriname, Organization for Tropical Studies, Museo Tridentino di Scienze Naturali, and Institute of Tropical Forest Conservation.

Media Contacts:
Jan Zverina, SDSC Communications, 858 534-5111 or jzverina@sdsc.edu
Warren R. Froelich, SDSC Communications, 858 822-3622 or froelich@sdsc.edu

Jan Zverina | EurekAlert!
Further information:
http://www.sdsc.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>