Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


SDSC-Developed Software Used in First Global Camera Trap Mammal Study

TEAM Project Offers First Worldwide View of Declining Mammal Populations

A novel software system developed by researchers at the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, has been used in the first global camera trap study of mammals, which made international headlines last month by emphasizing the importance of protected areas to ensure the diversity and survival of a wide range of animal populations.

The study, led by Jorge Ahumada, an ecologist with the Tropical Ecology Assessment and Monitoring Network (TEAM) at Conservation International, documented 105 species in nearly 52,000 images from seven protected areas across the Americas, Africa, and Asia. The images, according to a recent announcement by TEAM and Conservation International, reveal a wide variety of animals in their most candid moments – from a minute mouse to the enormous African elephant as well as gorillas, cougars, giant anteaters and, surprisingly, even tourists and poachers. A gallery of images from the study can be found here.

Findings from the study – not only the first global camera trap mammal study but also the largest camera trap study of any class of animals – were published in the journal Philosophical Transactions of the Royal Society. Analysis of collected data has helped scientists confirm a key conclusion that until now was only understood through uncoordinated local study: that habitat loss and smaller reserves have a direct and detrimental impact on the diversity and survival of mammal populations.

“Our goal was to come up with a software system to address the fact that despite advances in digital image capture, field biologists still lack adequate software solutions to process and manage the increasing amount of digital information in a cost-efficient manner,” said SDSC researcher Kai Lin, who led the software project.

Jorge Ahumada, ecologist with the Tropical Ecology Assessment and Monitoring Network (TEAM) and lead author of the Global Camera Trap Mammal Study.

© Jorge Ahumada

Called DeskTEAM and developed in the context of the TEAM project, the system incorporates numerous software features and functions specifically designed for the broader camera trapping community, such as the ability to run the application locally on a laptop or desktop computer without requiring an Internet connection, as well as the ability to run on multiple operating systems. The software also has an intuitive navigational user interface which allows users to easily manage hundreds or even thousands of images; the ability to automatically extract customized metadata information from digital images to increase standardization; the availability of embedded taxonomic lists so images can be easily tagged with species identities; and the ability to export data packages consisting of data, metadata, and images in standardized formats so that they can be transferred to online data warehouses for easy archiving and dissemination. Complete details of the DeskTEAM software system can be found here.

“We have been partners with Conservation International on the TEAM project since the early days of the project, beginning in September 2007,” said Chaitan Baru, a distinguished scientist at SDSC and lead of the TEAM cyberinfrastructure effort. “A talented and dedicated group of research and development staff at SDSC helped design the comprehensive cyberinfrastructure that runs the entire global TEAM network. We developed the various cyberinfrastructure components, and the services are now hosted and run out of SDSC.”

In addition to Baru and Lin, the TEAM cyberinfrastructure team at SDSC includes Sandeep Chandra, Kate Kaya, and Choonhan Youn.

“What makes this study scientifically groundbreaking is that we created for the first time consistent, comparable information for mammals on a global scale setting an effective baseline to monitor change. By using this single, standardized methodology in the years to come and comparing the data we receive, we will be able to see trends in mammal communities and take specific, targeted action to save them,” said Ahumada. “We hope that these data contribute to a better management of protected areas and conservation of mammals worldwide, and a more widespread use of standardized camera trapping studies to monitor these critically important animals.”

The Tropical Ecology Assessment and Monitoring Network (TEAM) is a partnership that includes Conservation International, The Missouri Botanical Garden, The Smithsonian Institution and the Wildlife Conservation Society. It is partially funded by these institutions and the Gordon and Betty Moore Foundation. Local Partners in the study are: Instituto Nacional de Pesquisas da Amazonia (INPA), Conservation International Suriname, Organization for Tropical Studies, Museo Tridentino di Scienze Naturali, and Institute of Tropical Forest Conservation.

Media Contacts:
Jan Zverina, SDSC Communications, 858 534-5111 or
Warren R. Froelich, SDSC Communications, 858 822-3622 or

Jan Zverina | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>