Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research team finds stress hormone key to alcohol dependence

26.01.2010
The findings suggest development of drug treatment for substance abuse

A team of scientists from The Scripps Research Institute has found that a specific stress hormone, the corticotropin-releasing factor (CRF), is key to the development and maintenance of alcohol dependence in animal models. Chemically blocking the stress factor also blocked the signs and symptoms of addiction, suggesting a potentially promising area for future drug development.

The article, the culmination of more than six years of research, will appear in an upcoming print edition of the journal Biological Psychiatry.

"I'm excited about this study," said Associate Professor Marisa Roberto, who led the research. "It represents an important step in understanding how the brain changes when it moves from a normal to an alcohol-dependent state."

The new study not only confirms the central role of CRF in alcohol addiction using a variety of different methods, but also shows that in rats the hormone can be blocked on a long-term basis to alleviate the symptoms of alcohol dependence.

Previous research had implicated CRF in alcohol dependence, but had shown the effectiveness of blocking CRF only in acute single doses of an antagonist (a substance that interferes the physiological action of another). The current study used three different types of CRF antagonists, all of which showed an anti-alcohol effect via the CRF system. In addition, the chronic administration of the antagonist for 23 days blocked the increased drinking associated with alcohol dependence.

Out of Control

Alcoholism, a chronic disease characterized by compulsive use of alcohol and loss of control over alcohol intake, is devastating both to individuals and their families and to society in general. About a third of the approximately 40,000 traffic fatalities every year involve drunk drivers, and direct and indirect public health costs are estimated to be in the hundreds of billions of dollars yearly.

"Research to understand alcoholism is important for society," said Roberto, a 2010 recipient of the prestigious Presidential Early Career Award for Scientists and Engineers. "Our study explored what we call in the field 'the dark side' of alcohol addiction. That's the compulsion to drink, not because it is pleasurable—which has been the focus of much previous research—but because it relieves the anxiety generated by abstinence and the stressful effects of withdrawal."

CRF is a natural substance involved in the body's stress response. Originally found only in the area of the brain known as the hypothalamus, it has now been localized in other brain regions, including the pituitary, where it stimulates the secretion of corticotropin and other biologically active substances, and the amygdala, an area that has been implicated in the elevated anxiety, withdrawal, and excessive drinking associated with alcohol dependence.

To confirm the role of CRF in the central amygdala for alcohol dependence, the research team used a multidisciplinary approach that included electrophysiological methods not previously applied to this problem.

The results from these cellular studies showed that CRF increased the strength of inhibitory synapses (junctions between two nerve cells) in neurons in a manner similar to alcohol. This change occurred through the increased release of the neurotransmitter GABA, which plays an important role in regulating neuronal excitability.

Blocking the Stress Response

Next, the team explored if the effects of CRF could be blocked through the administration of CRF antagonists. To do this, the scientists tested three different CRF1 antagonists (called antalarmin, NIH-3, and R121919) against alcohol in brain slices and injected R121919 for 23-days into the brains of rats that were exposed to conditions that would normally produce a dependence on alcohol.

Remarkably, the behavior of the "alcohol-dependent" rats receiving one of the CRF antagonists (R121919) mimicked their non-addicted ("naïve") counterparts. Instead of seeking out large amounts of alcohol like untreated alcohol-dependent rats, both the treated rats and their non-addicted brethren self-administered alcohol in only moderate amounts.

"This critical observation suggests that increased activation of CRF systems mediates the excessive drinking associated with development of dependence," said Roberto. "In other words, blocking CRF with prolonged CRF1 antagonist administration may prevent excessive alcohol consumption under a variety of behavioral and physiological conditions."

Importantly, in the study the rats did not exhibit tolerance to the suppressive effects of R121919 on alcohol drinking. In fact, they may have become even more sensitive to its effects over time—a good sign for the efficacy of this type of compound as it might be used repeatedly in a clinical setting.

The scientists' cellular studies also supported the promising effects of CRF1 antagonists. All of the CRF antagonists decreased basal GABAergic responses and abolished alcohol effects. Alcohol-dependent rats exhibited heightened sensitivity to CRF and the CRF1 antagonists on GABA release in the central amygdala region of the brain. CRF1 antagonist administration into the central amygdala reversed dependence–related elevations in extracellular GABA and blocked alcohol-induced increases in extracellular GABA in both dependent and naive rats. The levels of CRF and CRF1 mRNA in the central amygdala of dependent rats were also elevated.

Roberto notes that another intriguing aspect of the work is that it provides a possible physiological link between stress-related behaviors, emotional disorders (i.e. stress disorders, anxiety, depression), and the development of alcohol dependence.

In addition to Roberto, the paper, "CRF-induced Amygdala GABA Release Plays a Key Role in Alcohol Dependence," was co-authored by Maureen T. Cruz, Nicholas W. Gilpin, Valentina Sabino, Paul Schweitzer, Michal Bajo, Pietro Cottone, Samuel G. Madamba, David G. Stouffer, Eric P. Zorrilla, George F. Koob, George R. Siggins, and Loren H. Parsons, all of Scripps Research. For more information, see Biological Psychiatry. http://www.ncbi.nlm.nih.gov/pubmed/20060104?log$=activity

This research was supported by the National Institutes of Health's National Institute on Alcohol Abuse and Alcoholism (NIAAA) and National Institute on Drug Abuse (NIDA), as well as the Pearson Center for Alcoholism and Addiction Research and the Harold L. Dorris Neurological Research Institute, both at Scripps Research.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>