Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research study shows infectious prions can arise spontaneously in normal brain tissue

27.07.2010
Metal surfaces spur conversion of normal prion protein into disease-causing prions

In a startling new study that involved research on both sides of the Atlantic, scientists from The Scripps Research Institute in Florida and the University College London (UCL) Institute of Neurology in England have shown for the first time that abnormal prions, bits of infectious protein devoid of DNA or RNA that can cause fatal neurodegenerative disease, can suddenly erupt from healthy brain tissue.

The catalyst in the study was the metallic surface of simple steel wires. Previous research showed that prions bind readily to these types of surfaces and can initiate infection with remarkable efficiency. Surprisingly, according to the new research, wires coated with uninfected brain homogenate could also initiate prion disease in cell culture, which was transmissible to mice.

The findings are being published the week of July 26, 2010, in an advance, online edition of the journal Proceedings of the National Academy of Sciences (PNAS).

"Prion diseases such as sporadic Creutzfeldt-Jakob disease in humans or atypical bovine spongiform encephalopathy, a form of mad cow disease, occur rarely and at random," said Charles Weissmann, M.D., Ph.D., chair of Scripps Florida's Department of Infectology, who led the study with John Collinge, head of the Department of Neurodegenerative Disease at UCL Institute of Neurology. "It has been proposed that these events reflect rare, spontaneous formation of prions in brain. Our study offers experimental proof that prions can in fact originate spontaneously, and shows that this event is promoted by contact with steel surfaces."

Infectious prions, which are composed solely of protein, are classified by distinct strains, originally characterized by their incubation time and the disease they cause. These toxic prions have the ability to reproduce, despite the fact that they contain no nucleic acid genome.

Mammalian cells normally produce harmless cellular prion protein (PrPC). Following prion infection, the abnormal or misfolded prion protein (PrPSc) converts PrPC into a likeness of itself, by causing it to change its conformation or shape. The end-stage consists of large aggregates of these misfolded proteins, which cause massive tissue and cell damage.

A Highly Sensitive Test

In the new study, the scientists used the Scrapie Cell Assay, a test originally created by Weissmann that is highly sensitive to minute quantities of prions.

Using the Scrapie Cell Assay to measure infectivity of prion-coated wires, the team observed several unexpected instances of infectious prions in control groups where metal wires had been exposed only to uninfected normal mouse brain tissue. In the current study, this phenomenon was investigated in rigorous and exhaustive control experiments specifically designed to exclude prion contamination. Weissmann and his colleagues in London found that when normal prion protein is coated onto steel wires and brought into contact with cultured cells, a small but significant proportion of the coated wires cause prion infection of the cells – and when transferred to mice, they continue to spawn the disease.

Weissmann noted that an alternative interpretation of the results is that infectious prions are naturally present in the brain at levels not detectable by conventional methods, and are normally destroyed at the same rate they are created. If that is the case, he noted, metal surfaces could be acting to concentrate the infectious prions to the extent that they became quantifiable by the team's testing methods.

The first author of the study, "Spontaneous Generation of Mammalian Prions," is Julie Edgeworth of the UCL Institute of Neurology. Other authors of the study include Nathalie Gros, Jack Alden, Susan Joiner, Jonathan D.F. Wadsworth, Jackie Linehan, Sebastian Brandner, and Graham S. Jackson, also of the UCL Institute of Neurology.

The study was supported by the U.K. Medical Research Council.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida. See www.scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>