Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research study shows infectious prions can arise spontaneously in normal brain tissue

27.07.2010
Metal surfaces spur conversion of normal prion protein into disease-causing prions

In a startling new study that involved research on both sides of the Atlantic, scientists from The Scripps Research Institute in Florida and the University College London (UCL) Institute of Neurology in England have shown for the first time that abnormal prions, bits of infectious protein devoid of DNA or RNA that can cause fatal neurodegenerative disease, can suddenly erupt from healthy brain tissue.

The catalyst in the study was the metallic surface of simple steel wires. Previous research showed that prions bind readily to these types of surfaces and can initiate infection with remarkable efficiency. Surprisingly, according to the new research, wires coated with uninfected brain homogenate could also initiate prion disease in cell culture, which was transmissible to mice.

The findings are being published the week of July 26, 2010, in an advance, online edition of the journal Proceedings of the National Academy of Sciences (PNAS).

"Prion diseases such as sporadic Creutzfeldt-Jakob disease in humans or atypical bovine spongiform encephalopathy, a form of mad cow disease, occur rarely and at random," said Charles Weissmann, M.D., Ph.D., chair of Scripps Florida's Department of Infectology, who led the study with John Collinge, head of the Department of Neurodegenerative Disease at UCL Institute of Neurology. "It has been proposed that these events reflect rare, spontaneous formation of prions in brain. Our study offers experimental proof that prions can in fact originate spontaneously, and shows that this event is promoted by contact with steel surfaces."

Infectious prions, which are composed solely of protein, are classified by distinct strains, originally characterized by their incubation time and the disease they cause. These toxic prions have the ability to reproduce, despite the fact that they contain no nucleic acid genome.

Mammalian cells normally produce harmless cellular prion protein (PrPC). Following prion infection, the abnormal or misfolded prion protein (PrPSc) converts PrPC into a likeness of itself, by causing it to change its conformation or shape. The end-stage consists of large aggregates of these misfolded proteins, which cause massive tissue and cell damage.

A Highly Sensitive Test

In the new study, the scientists used the Scrapie Cell Assay, a test originally created by Weissmann that is highly sensitive to minute quantities of prions.

Using the Scrapie Cell Assay to measure infectivity of prion-coated wires, the team observed several unexpected instances of infectious prions in control groups where metal wires had been exposed only to uninfected normal mouse brain tissue. In the current study, this phenomenon was investigated in rigorous and exhaustive control experiments specifically designed to exclude prion contamination. Weissmann and his colleagues in London found that when normal prion protein is coated onto steel wires and brought into contact with cultured cells, a small but significant proportion of the coated wires cause prion infection of the cells – and when transferred to mice, they continue to spawn the disease.

Weissmann noted that an alternative interpretation of the results is that infectious prions are naturally present in the brain at levels not detectable by conventional methods, and are normally destroyed at the same rate they are created. If that is the case, he noted, metal surfaces could be acting to concentrate the infectious prions to the extent that they became quantifiable by the team's testing methods.

The first author of the study, "Spontaneous Generation of Mammalian Prions," is Julie Edgeworth of the UCL Institute of Neurology. Other authors of the study include Nathalie Gros, Jack Alden, Susan Joiner, Jonathan D.F. Wadsworth, Jackie Linehan, Sebastian Brandner, and Graham S. Jackson, also of the UCL Institute of Neurology.

The study was supported by the U.K. Medical Research Council.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida. See www.scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>