Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida Scientists Offer New Insight into Neuron Changes Brought About by Aging

23.01.2014
How aging affects communication between neurons is not well understood, a gap that makes it more difficult to treat a range of disorders, including Alzheimer’s and Parkinson’s disease.

A new study from the Florida campus of The Scripps Research Institute (TSRI) offers insights into how aging affects the brain’s neural circuitry, in some cases significantly altering gene expression in single neurons. These discoveries could point the way toward a better understanding of how aging affects our cognitive ability and new therapeutic targets for the treatment of neurodegenerative disease.

“Although we don’t know exactly why, we do know there is a signaling imbalance as we age, and we’ve captured these changes at the single neuron level,” said Sathyanarayanan V. Puthanveettil, a TSRI assistant professor who led the work. “If we could identify the underpinnings of this mechanism, we may be able to target the specific mechanism to affect or reverse the aging process in human neurons.”

To record the electrical and physiological properties of single neurons, the scientists created a new method and applied it to the marine snail Aplysia californica, a widely used animal model. Many Aplysia gene expression signatures have counterparts in the human genome.

Using this methodology, which was published in the Journal of Visualized Experiments, the scientists were then able to focus on neuron R15, a burst firing neuron that is implicated in the regulation of water content and reproduction, showing how its response to the neurotransmitter acetylcholine and gene expression changed with age.

In a study published in the journal PLOS ONE, the team described specific changes in burst firing and action potentials—which play a central role in cell-to-cell communication—during the aging of R15, suggesting that changes in the response to acetylcholine during aging has been conserved during evolution in organisms from snails to mammals.

In another study, published in published in BMC Genomics, the team revealed unexpected information about gene expression during R15 aging.

“Aging brings bidirectional changes in the gene expression,” said Puthanveettil. “Some gene expression goes up; some goes down. This was surprising, particularly that some gene expression went up—something you don’t necessarily associate with aging.”

The study also noted that more than 1,000 DNA sequences are regulated differently in mature versus old R15 neurons. Among the specific biological pathways that are altered are networks involved in: cell signaling and skeletal muscular system development; cell death and survival; cellular function maintenance and embryonic development; and neurological diseases and developmental and hereditary disorders.

To confirm these findings, Puthanveettil and his colleagues also isolated and examined three other Aplysia neurons. Interestingly, while all the neurons showed changes in gene expression with age, these changes weren’t necessarily similar among the neurons. Also the magnitude of change was specific to individual neurons.

The scientists are now investigating how and why aging affects neurons differently.

The first author of the Journal of Visualized Experiments study, “Aplysia Ganglia Preparation for Electrophysiological and Molecular Analyses of Single Neurons,” is Komol Akhmedov of TSRI. Other authors include Beena M. Kadakkuzha, also of TSRI. For more information, see http://www.jove.com/video/51075/aplysia-ganglia-preparation-for-electrophysiological-molecular

The first authors of the PLOS ONE study, “Decreased response to acetylcholine during aging of Aplysia neuron R15,” are Komol Akhmedov and Valerio Rizzo of TSRI. Other authors include Beena M. Kadakkuzha of TSRI, Christopher J. Carter and Neil S. Magoski of Queen's University, Canada, and Tom R Capo of the University of Miami. For more information, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874043/

The first author of the BMC Genomics study, “Age-Associated Bidirectional Modulation of Gene Expression in Single Identified R15 Neuron of Aplysia,” is Beena M Kadakkuzha of TSRI. Other authors include Komolitdin Akhmedov, Mohammad Fallahi and Anthony C Carvalloza of TSRI and Tom R Capo of the University of Miami. For more information, see http://www.biomedcentral.com/1471-2164/14/880/abstract

The studies were supported by the National Institutes of Health (grant Number 1 R21 MH096258), the Whitehall Foundation and the State of Florida.

About The Scripps Research Institute
The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation.
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>