Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida Scientists Design Molecule That Reverses Some Fragile X Syndrome Defects

05.09.2012
Scientists on the Florida campus of The Scripps Research Institute have designed a compound that shows promise as a potential therapy for one of the diseases closely linked to fragile X syndrome, a genetic condition that causes mental retardation, infertility, and memory impairment, and is the only known single-gene cause of autism.
The study, published online ahead of print in the journal ACS Chemical Biology September 4, 2012, focuses on tremor ataxia syndrome, which usually affects men over the age of 50 and results in Parkinson’s like-symptoms—trembling, balance problems, muscle rigidity, as well as some neurological difficulties, including short-term memory loss and severe mood swings.

With fragile X syndrome, tremor ataxia syndrome, and related diseases, the root of the problem is a structural motif known as an “expanded triplet repeat”—in which a series of three nucleotides are repeated more times than normal in the genetic code of affected individuals. This defect, located in the fragile X mental retardation 1 (FMR1) gene, causes serious problems with the processing of RNA.

These FXTAS model cells show the defects, in orange, that cause tremor ataxia syndrome. (Image courtesy of the Disney lab, The Scripps Research Institute).

“While there is an abundance of potential RNA drug targets in disease, no one has any idea how to identify or design small molecules to target these RNAs,” said Mathew Disney, a Scripps Research associate professor who led the study. “We have designed a compound capable of targeting the right RNA and reversing the defects that cause fragile X-associated tremor ataxia.”

Preventing Havoc

In tremor ataxia syndrome, the expanded triplet repeat leads to the expression of aberrant proteins that wreak widespread havoc. The repeats actually force the normal proteins that regulate RNA splicing—necessary for production of the right kind of proteins—into hiding.

The compound designed by Disney and his colleagues not only improves the RNA splicing process, but also minimizes the ability of repeats to wreak havoc on a cell.

“It stops the repeat-associated defects in cell culture,” Disney said, “and at fairly high concentrations, it completely reverses the defects. More importantly, the compound is non-toxic to the cells. It looks like a very good candidate for development, but we’re still in the early stages of testing.”

Overall, this study reinforces Disney’s earlier findings showing it is possible to identify and develop small molecules that target these traditionally recalcitrant RNA defects. In March of this year, Disney published a study in the Journal of the American Chemical Society (http://www.ncbi.nlm.nih.gov/pubmed/22300544) that described a small molecule that inhibited defects in myotonic dystrophy type 1 RNA in both cellular and animal models of disease.

“We’ve gotten very good at targeting RNA with small molecules, something a lot of people said couldn’t be done,” Disney pointed out. “Our approach is evolving into a general method that can be used to target any disease that is associated with an RNA, including, perhaps, fragile X syndrome itself.”

The new compound also works as a probe to better understand how these repeats cause fragile X syndrome and how they contribute to tremor ataxia, Disney added.
In addition to Disney, authors of the study, “Small Molecule That Targets r(CGG) and Improves Defects in 2 Fragile X‑Associated Tremor Ataxia Syndrome,” include Biao Liu, Wang-Yong Yang, Tuan Tran, and Jessica L. Childs-Disney of Scripps Research; and Nicolas Charlet-Berguerand and Chantal Sellier of the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), the Centre National de la Recherche Scientifique (CNRS), and University of Strasbourg, Illkirch, France. For more information on the paper, see http://pubs.acs.org/doi/full/10.1021/cb300135h.

The study was funded by the National Institutes of Health (award numbers 3R01GM079235-02S1 and 1R01GM079235-01A2), INSERM, the French National Research Agency, and The Scripps Research Institute.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>