Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists study possible responses to climate emergencies

01.09.2009
The future of the Earth could rest on potentially dangerous and unproven geoengineering technologies unless emissions of carbon dioxide can be greatly reduced, a new study has found.

The report (published September 1, by the Royal Society, the UK's national academy of science) found that unless future efforts to reduce greenhouse gas emissions are much more successful than they have been so far, additional action in the form of geoengineering will be necessary to cool the planet. However, the report identified major uncertainties regarding the effectiveness, costs, and environmental impacts of geoengineering technologies.

"Reducing our greenhouse gas emissions is more important than ever," said coauthor Ken Caldeira of the Carnegie Institution's Department of Global Ecology, "but even with our best efforts, the Earth is likely to continue warming throughout this century due to inertia in the climate system. Cutting emissions can reduce but cannot eliminate the risk of a climate emergency." Possible climate emergencies include rapid collapse of the Greenland ice sheet into the sea causing major sea level rise, a shift in rainfall patterns causing massive global crop failures, or melting Arctic permafrost causing catastrophic release of the powerful greenhouse gas methane.

Professor John Shepherd, who chaired the study said, "It is an unpalatable truth that unless we can succeed in greatly reducing CO2 emissions we are headed for a very uncomfortable and challenging climate future, and geoengineering will be the only option left to limit further temperature increases. Our research found that some geoengineering techniques could have serious unintended and detrimental effects on many people and ecosystems—yet we are still failing to take the only action that will prevent us from having to rely on them. Geoengineering and its consequences are the price we may have to pay for failure to act on climate change."

The report assesses the two main kinds of geoengineering techniques—Carbon Dioxide Removal (CDR) and Solar Radiation Management (SRM). CDR techniques address the root of the problem rising CO2—and so have fewer uncertainties and risks, as they work to return the Earth to a more normal state. They are therefore considered preferable to SRM techniques, but none has yet been demonstrated to be effective at an affordable cost, with acceptable environmental impacts, and they only work to reduce temperatures over very long timescales.

SRM techniques act by reflecting the sun's energy away from Earth, meaning they lower temperatures rapidly, but do not affect CO2 levels. They therefore fail to address the wider effects of rising CO2, such as ocean acidification, and would need to be deployed for a very long time. Although they are relatively cheap to deploy, there are considerable uncertainties about their regional consequences, and they only reduce some, but not all, of the effects of climate change, while possibly creating other problems. The report concludes that SRM techniques could be useful if a threshold is reached where action to reduce temperatures must be taken rapidly, but that they are not an alternative to emissions reductions or CDR techniques.

"If we are confronted with a climate emergency and decide we cannot tolerate any more warming, engineering some system to deflect more sunlight back to space would likely be the primary option available to cool the Earth quickly," said Caldeira. "Of course, we need to make sure that tinkering with our environment in this way would not just cause bigger problems. We need to study these options now so that we can understand the pluses and minuses in case we need to deploy them."

Professor Shepherd added, "None of the geoengineering technologies so far suggested is a magic bullet, and all have risks and uncertainties associated with them. It is essential that we strive to cut emissions now, but we must also face the very real possibility that we will fail. If 'Plan B' is to be an option in the future, considerable research and development of the different methods, their environmental impacts, and governance issues must be undertaken now. Used irresponsibly or without regard for possible side effects, geoengineering could have catastrophic consequences similar to those of climate change itself. We must ensure that a governance framework is in place to prevent this."

The full report can be downloaded at: www.royalsociety.org/geoengineeringclimate

Link to Royal Society press release: http://royalsociety.org/news.asp?id=8734

The Carnegie Institution (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science. The Department of Global Ecology, located in Stanford, California, was established in 2002 to help build the scientific foundations for a sustainable future. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

The Royal Society is an independent academy promoting the natural and applied sciences. Founded in 1660, the Society has three roles, as the UK academy of science, as a learned Society, and as a funding agency.

Ken Caldeira | EurekAlert!
Further information:
http://www.ciw.edu
http://royalsociety.org/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>