Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Show There’s Nothing Boring About Watching Paint Dry

11.08.2010
It turns out that watching paint dry might not be as boring as the old adage claims. A team led by Yale University researchers has come up with a new technique to study the mechanics of coatings as they dry and peel, and has discovered that the process is far from mundane.

In the August 9-13 edition of the Proceedings of the National Academy of Sciences, the team presents a new way to image and analyze the mechanical stress that causes colloidal coatings—those in which microscopic particles of one substance are dispersed throughout another—to peel off of surfaces.

Understanding how and why coatings fail has broad applications in the physical and biological sciences, said Eric Dufresne, the John J. Lee Associate Professor of Mechanical Engineering at Yale and lead author of the study.

“Coatings protect almost every surface you encounter, from paint on a wall to Teflon on a frying pan to the skin on our own bodies. When coatings peel and crack they put the underlying material at risk,” Dufresne said. “Our research is aimed at pinpointing the failure of coatings. We’ve developed this new technique to zoom in on coatings and watch them fail at the microscopic level.”

To visualize the microscopic motion of paint in 3D, the team mixed in tiny fluorescent particles that glow when illuminated by a laser. By tracing the motion of these particles over time with a microscope, they captured the motion of the paint as it peeled and dried in detail.

In addition, the team was able to track the 3-D forces generated by the paint as it dried, producing a “stress map” of the mechanical deformation of the coating as it failed. “The trick was to apply the paint to a soft surface, made of silicone rubber, that is ever so slightly deformed by the gentle forces exerted by the drying paint,” Dufresne said.

Although the current study focuses on colloidal coatings, the technique could be applied to all kinds of coatings, Dufresne said. Next, the team hopes to improve on current methods for mitigating peeling in a wide range of coatings.

“This is a completely new way of looking at a very old problem.”

Other authors of the study include Ye Xu, Wilfried Engl, Elizabeth Jerison and Callen Hyland (Yale University); Kevin Wallenstein (Princeton University); and Larry Wilen (Unilever).

Citation: DOI: 10.1073/pnas.1005537107

PRESS CONTACT: Suzanne Taylor Muzzin 203-432-8555

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>