Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists question fisheries health test

25.11.2010
A measure widely advocated as a means of assessing the health of marine ecosystems is an ineffective guide to trends in biodiversity, and more direct monitoring is needed, a new study has found.

The findings – published this week in Nature – followed an examination of whether changes in fishery catches reflect changes in the structure of marine food webs, and therefore are a suitable guide to assess the impacts of fishing on marine ecosystem health.

CSIRO Wealth from Oceans Flagship scientist, Dr Beth Fulton, and Dr Sean Tracey from the Tasmanian Aquaculture and Fisheries Institute at the University of Tasmania, were members of the international team involved in the study.

“Biodiversity indicators are used to track the impacts of fishing as a guide to management effectiveness,” Dr Fulton said.

“The most widely adopted indicator of biodiversity in the ocean at a global scale is the ‘average trophic level’ (position in the food chain) determined from fishery catches.

“This is intended to detect shifts from high-trophic-level predators such as Atlantic cod and tunas to low-trophic-level fish, invertebrates and plankton-feeders such as oysters.”

“We also found that average trophic level determined from fishery catches does not reliably measure the magnitude of fishing impacts or the rate at which marine ecosystems are being altered by fishing.”

Dr Beth Fulton, CSIRODr Tracey said the study was the first large-scale test of whether average trophic level determined by fishery catch is a good indicator of ecosystem average trophic level, marine biodiversity and ecosystem status.

“We looked at average trophic level determined from a range of sources including global fishery catches, long-term surveys, stock assessments and complex computer modelling for marine ecosystems around the world,” Dr Tracey said.

“In contrast to previous findings, which reported declines in catch average trophic level thought to be due to the loss of large fish and the increasing catch of small fish, we found that catches are increasing at most levels of marine food webs and that the average trophic level has actually increased in the past 25 years.

“We also found that average trophic level determined from fishery catches does not reliably measure the magnitude of fishing impacts or the rate at which marine ecosystems are being altered by fishing.”

Dr Tracey says global fisheries are at a crucial turning point, with high fishing pressure being offset in some regions by rebuilding efforts. Relying on the average trophic level of catch could mislead policy development.

Dr Fulton said that, to target limited resources in the best way, researchers should focus on assessing species vulnerable to fishing that are not currently assessed effectively

“We also need to develop and expan trend-detection methods that can be applied more widely, particularly to countries with few resources for science and assessment.

“Through such efforts we can better detect and convey the true impact of fisheries on marine biodiversity,” Dr Fulton said.

Led by University of Washington fisheries scientist, Trevor A. Branch, the study’s findings are published in a letter in Nature entitled: “The trophic fingerprint of marine fisheries”.

Bryony Bennett | EurekAlert!
Further information:
http://www.csiro.au

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>