Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists pinpoint why we miss subtle visual changes, and why it keeps us sane

31.03.2014

Researchers discover a 'continuity field' that merges the appearance of similar objects seen within a matter of seconds

Ever notice how Harry Potter's T-shirt abruptly changes from a crewneck to a henley shirt in "The Order of the Phoenix," or how in "Pretty Woman," Julia Roberts' croissant inexplicably morphs into a pancake?

Don't worry if you missed those continuity bloopers. Vision scientists at the University of California, Berkeley, and the Massachusetts Institute of Technology have discovered an upside to the brain mechanism that can blind us to subtle changes in movies and in the real world.

They've discovered a "continuity field" in which the brain visually merges similar objects seen within a 15-second time frame, hence the previously mentioned jump from crewneck to henley goes largely unnoticed. Unlike in the movies, objects in the real world don't spontaneously change from, say, a croissant to a pancake in a matter of seconds, so the continuity field stabilizes what we see over time.

"The continuity field smoothes what would otherwise be a jittery perception of object features over time," said David Whitney, associate professor of psychology at UC Berkeley and senior author of the study, to be published online Sunday, March 30, in the journal Nature Neuroscience.

"Essentially, it pulls together physically but not radically different objects to appear more similar to each other," Whitney added. "This is surprising because it means the visual system sacrifices accuracy for the sake of the continuous, stable perception of objects."

Conversely, without a continuity field, we may be hypersensitive to every visual fluctuation triggered by shadows, movement and myriad other factors. For example, faces and objects would appear to morph from moment to moment in an effect similar to being on hallucinogenic drugs, researchers said.

"The brain has learned that the real world usually doesn't change suddenly, and it applies that knowledge to make our visual experience more consistent from one moment to the next," said Jason Fischer, a postdoctoral fellow at MIT and lead author of the study, which he conducted while he was a Ph.D. student in Whitney's lab at UC Berkeley.

To establish the existence of a continuity field, the researchers had study participants view a series of bars, or gratings, on a computer screen. The gratings appeared at random angles once every five seconds.

Participants were instructed to adjust the angle of a white bar so that it matched the angle of each grating they just viewed. They repeated this task with hundreds of gratings positioned at different angles. The researchers found that instead of precisely matching the orientation of the grating, participants averaged out the angle of the three most recently viewed gratings.

"Even though the sequence of images was random, participants' perception of any given image was biased strongly toward the past several images that came before it," said Fischer, who called this phenomenon "perceptual serial dependence."

In another experiment, researchers set the gratings far apart on the computer screen, and found that the participants did not merge together the angles when the objects were far apart. This suggests that the objects must be close together for the continuity effect to work.

For a comedic example of how we might see things if there were no continuity field, watch the commercial for MIO squirt juice at https://www.youtube.com/watch?v=tXG0PACMUOo

Yasmin Anwar | EurekAlert!
Further information:
http://www.berkeley.edu

Further reports about: Technology continuity field images mechanism watch

More articles from Studies and Analyses:

nachricht Risk-taking propensity changes, especially in young adulthood and in older age
29.01.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Designing a pop-up future
27.01.2016 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>