Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists pinpoint why we miss subtle visual changes, and why it keeps us sane

31.03.2014

Researchers discover a 'continuity field' that merges the appearance of similar objects seen within a matter of seconds

Ever notice how Harry Potter's T-shirt abruptly changes from a crewneck to a henley shirt in "The Order of the Phoenix," or how in "Pretty Woman," Julia Roberts' croissant inexplicably morphs into a pancake?

Don't worry if you missed those continuity bloopers. Vision scientists at the University of California, Berkeley, and the Massachusetts Institute of Technology have discovered an upside to the brain mechanism that can blind us to subtle changes in movies and in the real world.

They've discovered a "continuity field" in which the brain visually merges similar objects seen within a 15-second time frame, hence the previously mentioned jump from crewneck to henley goes largely unnoticed. Unlike in the movies, objects in the real world don't spontaneously change from, say, a croissant to a pancake in a matter of seconds, so the continuity field stabilizes what we see over time.

"The continuity field smoothes what would otherwise be a jittery perception of object features over time," said David Whitney, associate professor of psychology at UC Berkeley and senior author of the study, to be published online Sunday, March 30, in the journal Nature Neuroscience.

"Essentially, it pulls together physically but not radically different objects to appear more similar to each other," Whitney added. "This is surprising because it means the visual system sacrifices accuracy for the sake of the continuous, stable perception of objects."

Conversely, without a continuity field, we may be hypersensitive to every visual fluctuation triggered by shadows, movement and myriad other factors. For example, faces and objects would appear to morph from moment to moment in an effect similar to being on hallucinogenic drugs, researchers said.

"The brain has learned that the real world usually doesn't change suddenly, and it applies that knowledge to make our visual experience more consistent from one moment to the next," said Jason Fischer, a postdoctoral fellow at MIT and lead author of the study, which he conducted while he was a Ph.D. student in Whitney's lab at UC Berkeley.

To establish the existence of a continuity field, the researchers had study participants view a series of bars, or gratings, on a computer screen. The gratings appeared at random angles once every five seconds.

Participants were instructed to adjust the angle of a white bar so that it matched the angle of each grating they just viewed. They repeated this task with hundreds of gratings positioned at different angles. The researchers found that instead of precisely matching the orientation of the grating, participants averaged out the angle of the three most recently viewed gratings.

"Even though the sequence of images was random, participants' perception of any given image was biased strongly toward the past several images that came before it," said Fischer, who called this phenomenon "perceptual serial dependence."

In another experiment, researchers set the gratings far apart on the computer screen, and found that the participants did not merge together the angles when the objects were far apart. This suggests that the objects must be close together for the continuity effect to work.

For a comedic example of how we might see things if there were no continuity field, watch the commercial for MIO squirt juice at https://www.youtube.com/watch?v=tXG0PACMUOo

Yasmin Anwar | EurekAlert!
Further information:
http://www.berkeley.edu

Further reports about: Technology continuity field images mechanism watch

More articles from Studies and Analyses:

nachricht Study suggests new way of preventing diabetes-associated blindness
26.05.2015 | Johns Hopkins Medicine

nachricht Memories Influence Choice of Food
22.05.2015 | Universität Basel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>