Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify new target to battle rheumatoid arthritis

21.05.2012
A new study led by researchers at Hospital for Special Surgery identifies the mechanism by which a cell signaling pathway contributes to the development of rheumatoid arthritis (RA).

In addition, the study provides evidence that drugs under development for diseases such as cancer could potentially be used to treat RA. Rheumatoid arthritis, a systemic inflammatory autoimmune disease that can be crippling, impacts over a million adults in the United States.

"We uncovered a novel mechanism by which the Notch pathway could contribute to RA, said Xiaoyu Hu, M.D., Ph.D., a research scientist at Hospital for Special Surgery in New York City and principal investigator of the study. The study appears online in advance of print in Nature Immunology.

Prior to this study, researchers knew that an intracellular molecular pathway called Notch is involved in diseases such as cancer. In the last year, other scientists conducted a genome wide association study to identify genes that were linked to the development of rheumatoid arthritis. They discovered that a certain mutation in a gene involved in the Notch pathway puts patients at risk for RA, but nobody knew just how it was involved.

"We were intrigued. Nothing has been known about how the Notch pathway is important to RA," said Dr. Hu. Working with researchers at other institutions in the United States and abroad, HSS investigators started putting two and two together and noted that Notch might be involved in a misfiring of the immune system that is commonly seen in RA.

The researchers designed experiments to test whether the Notch pathway had an influence on macrophages, a type of white blood cell that is most commonly known for gobbling up pathogens but which can also cause inflammation. Macrophages that have gone awry possess widespread pro-inflammatory and destructive capabilities that can critically contribute to acute and chronic rheumatoid arthritis. "In the case of RA, inflammatory macrophages attack joints and they produce inflammatory mediators that basically sustain inflammation in joints," said Dr. Hu.

In experiments, researchers found that knockout mice that lack the Notch pathway in macrophages were unable to produce certain type of macrophages and exhibited a lesser inflammatory phenotype.

"Notch is essential for the development and function of a cell type called the inflammatory macrophages and if this pathway is missing in mice, then you don't get good differentiation of the inflammatory macrophages," said Dr. Hu. In a nutshell, the Notch pathway is essential for the differentiation and function of inflammatory macrophages, and these macrophages are critical for human RA pathogenesis.

In a series of test tube studies, the researchers flushed out the specifics of how Notch influences the molecular cascade that leads to generation of inflammatory macrophage. In another experiment, the investigators used an inhibitor of the Notch pathway called GSI-34 that is under development and showed that this drug could inhibit the function of macrophages.

The researchers say the study provides the first explanation of how Notch contributes to rheumatoid arthritis pathogenesis. It also shows, for the first time, that investigational Notch inhibitors under development for cancer and Alzheimer's could potentially be used to treat RA. Several Notch inhibitors are under development by various companies and a few are currently in Phase III trials.

"Before this study, the Notch pathway has been implicated mainly in cancer, but in this study we define how it is connected to RA," said Dr. Hu.

The study was supported by funding from the National Institutes of Health and the American College of Rheumatology. Other authors involved in the study include Hospital for Special Surgery researchers Baohong Zao, Ph.D., Lionel Ivashkiv, M.D., Carl Blobel, M.D., Ph.D., Jimmy Zhu, Sinead Smith, and Allen Chung; Julia Foldi, Ph.D., and Chao Shi, Ph.D., from Weill Cornell Graduate School of Medical Sciences; Hasina Outtz and Jan Kitajewski, Ph.D., from Columbia University; Silvio Weber and Paul Saftig, Ph.D., from the Christian Albrechts Universitat Kiel, Kiel, Germany; Yueming Li, Ph.D., from Memorial Sloan-Kettering Cancer Center; and Keiko Ozato, Ph.D., from the National Institute of Child Health and Human Development.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics, No. 2 in rheumatology, No. 19 in neurology, and No. 16 in geriatrics by U.S.News & World Report (2011-12), and is the first hospital in New York State to receive Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center three consecutive times. HSS has one of the lowest infection rates in the country. From 2007 to 2011, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. HSS is a member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College and as such all Hospital for Special Surgery medical staff are faculty of Weill Cornell. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at www.hss.edu.

For more information contact:
Phyllis Fisher
212-606-1197
FisherP@hss.edu

Phyllis Fisher | EurekAlert!
Further information:
http://www.hss.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>