Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify new target to battle rheumatoid arthritis

21.05.2012
A new study led by researchers at Hospital for Special Surgery identifies the mechanism by which a cell signaling pathway contributes to the development of rheumatoid arthritis (RA).

In addition, the study provides evidence that drugs under development for diseases such as cancer could potentially be used to treat RA. Rheumatoid arthritis, a systemic inflammatory autoimmune disease that can be crippling, impacts over a million adults in the United States.

"We uncovered a novel mechanism by which the Notch pathway could contribute to RA, said Xiaoyu Hu, M.D., Ph.D., a research scientist at Hospital for Special Surgery in New York City and principal investigator of the study. The study appears online in advance of print in Nature Immunology.

Prior to this study, researchers knew that an intracellular molecular pathway called Notch is involved in diseases such as cancer. In the last year, other scientists conducted a genome wide association study to identify genes that were linked to the development of rheumatoid arthritis. They discovered that a certain mutation in a gene involved in the Notch pathway puts patients at risk for RA, but nobody knew just how it was involved.

"We were intrigued. Nothing has been known about how the Notch pathway is important to RA," said Dr. Hu. Working with researchers at other institutions in the United States and abroad, HSS investigators started putting two and two together and noted that Notch might be involved in a misfiring of the immune system that is commonly seen in RA.

The researchers designed experiments to test whether the Notch pathway had an influence on macrophages, a type of white blood cell that is most commonly known for gobbling up pathogens but which can also cause inflammation. Macrophages that have gone awry possess widespread pro-inflammatory and destructive capabilities that can critically contribute to acute and chronic rheumatoid arthritis. "In the case of RA, inflammatory macrophages attack joints and they produce inflammatory mediators that basically sustain inflammation in joints," said Dr. Hu.

In experiments, researchers found that knockout mice that lack the Notch pathway in macrophages were unable to produce certain type of macrophages and exhibited a lesser inflammatory phenotype.

"Notch is essential for the development and function of a cell type called the inflammatory macrophages and if this pathway is missing in mice, then you don't get good differentiation of the inflammatory macrophages," said Dr. Hu. In a nutshell, the Notch pathway is essential for the differentiation and function of inflammatory macrophages, and these macrophages are critical for human RA pathogenesis.

In a series of test tube studies, the researchers flushed out the specifics of how Notch influences the molecular cascade that leads to generation of inflammatory macrophage. In another experiment, the investigators used an inhibitor of the Notch pathway called GSI-34 that is under development and showed that this drug could inhibit the function of macrophages.

The researchers say the study provides the first explanation of how Notch contributes to rheumatoid arthritis pathogenesis. It also shows, for the first time, that investigational Notch inhibitors under development for cancer and Alzheimer's could potentially be used to treat RA. Several Notch inhibitors are under development by various companies and a few are currently in Phase III trials.

"Before this study, the Notch pathway has been implicated mainly in cancer, but in this study we define how it is connected to RA," said Dr. Hu.

The study was supported by funding from the National Institutes of Health and the American College of Rheumatology. Other authors involved in the study include Hospital for Special Surgery researchers Baohong Zao, Ph.D., Lionel Ivashkiv, M.D., Carl Blobel, M.D., Ph.D., Jimmy Zhu, Sinead Smith, and Allen Chung; Julia Foldi, Ph.D., and Chao Shi, Ph.D., from Weill Cornell Graduate School of Medical Sciences; Hasina Outtz and Jan Kitajewski, Ph.D., from Columbia University; Silvio Weber and Paul Saftig, Ph.D., from the Christian Albrechts Universitat Kiel, Kiel, Germany; Yueming Li, Ph.D., from Memorial Sloan-Kettering Cancer Center; and Keiko Ozato, Ph.D., from the National Institute of Child Health and Human Development.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics, No. 2 in rheumatology, No. 19 in neurology, and No. 16 in geriatrics by U.S.News & World Report (2011-12), and is the first hospital in New York State to receive Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center three consecutive times. HSS has one of the lowest infection rates in the country. From 2007 to 2011, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. HSS is a member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College and as such all Hospital for Special Surgery medical staff are faculty of Weill Cornell. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at www.hss.edu.

For more information contact:
Phyllis Fisher
212-606-1197
FisherP@hss.edu

Phyllis Fisher | EurekAlert!
Further information:
http://www.hss.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>