Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify mutation in SIGMAR1 gene linked to juvenile ALS

12.08.2011
Sigma-1 receptor offers potential therapeutic target

Researchers from the Kingdom of Saudi Arabia have identified a mutation on the SIGMAR1 gene associated with the development of juvenile amyotrophic lateral sclerosis (ALS). Study findings published today in Annals of Neurology, a journal of the American Neurological Association and the Child Neurology Society, show the gene variant affects Sigma-1 receptors which are involved in motor neuron function and disease development.

ALS, also referred to as Lou Gehrig's disease, is a progressive neurodegenerative disorder that attacks brain and spinal cord nerve cells (neurons) responsible for controlling voluntary muscle movement. The degeneration of upper and lower motor neurons gradually weakens the muscles they control, leading to paralysis and eventual death from respiratory failure.

Studies report an annual incidence of 1-3 per 100,000 individuals, with 90% of cases not having a family history of the disease (sporadic ALS). In the remaining 10% of cases there is more than one affected family member (familial ALS). Juvenile ALS—characterized by age of onset below 25 years—is a rare and sporadic disorder, making it difficult to determine incidence rates. One of the more prominent juvenile ALS patients is renowned physicist, Professor Stephen Hawking, who was diagnosed at the age of 21.

Previous research found that mutation of the superoxide dismutase 1 (SOD1) gene accounts for 20% of familial and 5% of sporadic ALS cases; gene mutations of ALS2 and SETX have been reported in juvenile ALS cases. The present study led by Dr. Amr Al-Saif from the King Faisal Specialist Hospital and Research Center in Riyadh, KSA performed genetic testing on four patients from an ALS family who were diagnosed with juvenile ALS to investigate mutations suspected in disease development.

Researchers performed gene mapping on the DNA of study participants and used direct sequencing to detect the genetic variant. The team identified a shared homozygosity region in affected individuals and gene sequencing of SIGMAR1 revealed a mutation affecting the encoded protein, Sigma-1 receptor. Those cells with the mutant protein were less resistant to programmed cell death (apoptosis) induced by stress to the endoplasmic reticulum.

"Prior evidence has established that Sigma-1 receptors have neuroprotective properties and animal models with this gene inactivated have displayed motor deficiency," explains Dr. Al-Saif. "Our findings emphasize the important role of Sigma-1 receptors in motor neuron function and disease. Further exploration is warranted to uncover potential therapeutic targets for ALS. "

This study is published in Annals of Neurology. Media wishing to receive a PDF of this article may contact healthnews@wiley.com.

Full citation: "A Mutation in Sigma-1 Receptor Causes Juvenile Amyotrophic Lateral Sclerosis"; Amr Al-Saif, Futwan Al-Mohanna and Saeed Bohlega. Annals of Neurology; Published Online: August 12, 2011 (DOI:10.1002/ana.22534). http://doi.wiley.com/10.1002/ana.22534

About the Journal

Annals of Neurology, the official journal of the American Neurological Association and the Child Neurology Society, publishes articles of broad interest with potential for high impact in understanding the mechanisms and treatment of diseases of the human nervous system. All areas of clinical and basic neuroscience, including new technologies, cellular and molecular neurobiology, population sciences, and studies of behavior, addiction, and psychiatric diseases are of interest to the journal.

About Wiley-Blackwell

Wiley-Blackwell is the international scientific, technical, medical, and scholarly publishing business of John Wiley & Sons, with strengths in every major academic and professional field and partnerships with many of the world's leading societies. Wiley-Blackwell publishes nearly 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols. For more information, please visit www.wileyblackwell.com or our new online platform, Wiley Online Library (wileyonlinelibrary.com), one of the world's most extensive multidisciplinary collections of online resources, covering life, health, social and physical sciences, and humanities.

Dawn Peters | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>