Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find new twist on drug screening to treat common childhood cancer

19.08.2010
A study led by scientists at The Hospital for Sick Children (SickKids) reveals a new method of identifying drugs to treat children suffering from fatal cancers for which an effective treatment has not been found.

Rather than developing a new drug from scratch, which is a complicated and time-consuming process, they tried a different approach: in the lab, they tested existing drugs on cancer stem cells from young patients with neuroblastoma, one of the common cancers of infants and children. Cancer stem cells are the very cells that scientists suspect are responsible for relapses. The study is published in the August 18 advance online edition of EMBO Molecular Medicine.

The idea of repurposing existing medications is not new, but testing them on the cells isolated directly from children and that are thought to be responsible for the spread and regrowth of their tumours is novel. According to the study's principal investigator, Dr. David Kaplan, there is an urgent need to develop new treatments for neuroblastoma. Less than 40 per cent of patients over the age of one survive this cancer, and the disease usually relapses, aggressively spreading or metastasizing to other parts of the body.

"We conducted our drug discovery by targeting the cells that we think are responsible for the cancer coming back," says Kaplan, Senior Scientist at SickKids and Professor in the Department of Molecular Genetics at the University of Toronto. "This is a new way of developing drugs for kids, as we are taking the patients' own cancer stem cells and testing them in the lab."

The team, led by Dr. Kristen Smith, postdoctoral fellow in Kaplan's laboratory, had two main goals in this project: to eliminate the cancer cells and to do this without harming healthy cells. Since cancer therapies like chemotherapy kill good cells along with the bad, striking this delicate balance – even in adult cancers – can be challenging. This risk of toxicity is amplified in children, whose growing bodies are particularly vulnerable to the side-effects of powerful treatments, which can result in developmental problems and a higher risk of developing cancers as adults. As a result, some drugs that are proven to effectively treat cancer in adults cannot be used in children, leaving few options for some young patients.

Neuroblastoma, a solid tumour found outside the brain in the nervous system, is the most frequent cause of disease-related death in children.

The research team identified two drugs, DECA-14, a version of an antibiotic that is found in some mouthwashes, and rapamycin, a drug that is used to prevent organ rejection in children who have received transplants. Both medications were found to be effective in treating mice with neuroblastoma and were non-toxic to the normal stem cells from children.

The researchers were able to begin a clinical trial much faster than if a new drug was being developed since one of the therapies, rapamycin, had already been proven to be safe in children, with established protocols that outline the quantity and frequency of treatment. On the basis of this study, a SickKids-led North American Phase I clinical trial is already underway in collaboration with CHU Sainte-Justine in Montreal, as well as two centres in the US. The trial will evaluate rapamycin in combination with the chemotherapy drug vinblastine, for paediatric solid tumours. This trial is led by Dr. Sylvain Baruchel, Staff Oncologist and Senior Associate Scientist at SickKids and Professor in the Department of Paediatrics at the University of Toronto, who was also a collaborator on this study.

If the clinical trial shows positive results, this could be the beginning of a personalized medicine approach, Kaplan says. "Our dream is that children will come to SickKids, we'll isolate their cancer stem cells, screen them with libraries of drugs and find out whether Patient A will respond to Therapy B.

Suzanne Gold | EurekAlert!
Further information:
http://www.sickkids.ca
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>