Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Develop New Approach to Predicting Losses from Disasters

A group of engineering and scientific experts have developed a new model to better predict losses due to natural and man-made environmental disasters. Researchers say their approach has the potential to assist emergency planners and other disaster preparedness experts reduce negative impacts through improved prediction.

According to lead researcher Lianfa Li of LREIS, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, “This improved detection of high risk has implications for risk assessment and management in supporting more precise information for decision-making.” The approach, while geared in this instance on flooding events, “has broader applications to typhoons, hurricanes, landslides, tsunamis and other adverse situations with natural and man-made causes,” according to Li.

The new analysis method is detailed in the article “Assessment of Catastrophic Risk Using a Bayesian Network Constructed from Domain Knowledge and Spatial Data” in the July issue of the journal Risk Analysis, published by the Society for Risk Analysis. The authors include Lianfa Li, Jinfeng Wang, and Chengsheng Jiang of the Chinese Academy of Sciences and Hareton Leung of Hong Kong Polytechnic University.

The researchers say their approach is unique in that it integrates expert input, geographic data, and a host of contributing factors in predicting the likelihood of certain adverse outcomes, allowing emergency planners to pre-position resources and prepare staff based on more information than is provided by reviewing similar events that have occurred in the past.

The model in effect operates as a type of “artificial intelligence,” according to Li. The supporting computer program “can learn from existing data and users can leverage expert knowledge to revise and improve the model, make inferences about missing data, and bridge other uncertainties to enhance the predictability of natural disasters and decrease potential losses.” Li added, “Our study proposes a generic modeling framework that integrates relevant quantitative and qualitative factors within a consistent system for assessment of catastrophic risks.”

The so-called Bayesian network approach for disaster prediction makes use of information from geographers, construction engineers, ecologists and economists. It was validated against data from flood disasters along the Heihe river in northwest China from 2006 to 2008, which indicated its relatively better performance than other available known methods.

Risk Analysis: An International Journal is published by the nonprofit Society for Risk Analysis (SRA). SRA is a multidisciplinary, interdisciplinary, scholarly, international society that provides an open forum for all those who are interested in risk analysis. Risk analysis is broadly defined to include risk assessment, risk characterization, risk communication, risk management, and policy relating to risk, in the context of risks of concern to individuals, to public and private sector organizations, and to society at a local, regional, national, or global level.

Contact: Steve Gibb, 703.610.2441 or Lisa Pellegrin, 571.327.4868 or to arrange an interview with the author(s). Note to editors: The complete study is available upon request from Lisa Pellegrin/Steve Gibb or here:

Steve Gibb | Newswise Science News
Further information:

Further reports about: Analysis Chinese herbs Disasters Risk Risk Analysis SRA natural disaster

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>