Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create Hybrid System of Human-Machine Interaction

17.06.2009
In a groundbreaking study, scientists at FAU have created a "hybrid" system to examine real-time interactions between humans and machines (virtual partners). By pitting human against machine, they open up the possibility of exploring and understanding a wide variety of interactions between minds and machines, and establishing the first step toward a much friendlier union of man and machine, and perhaps even creating a different kind of machine altogether.

For more than 25 years, scientists in the Center for Complex Systems and Brain Sciences (CCSBS) in Florida Atlantic University’s Charles E. Schmidt College of Science, and others around the world, have been trying to decipher the laws of coordinated behavior called “coordination dynamics”.

Unlike the laws of motion of physical bodies, the equations of coordination dynamics describe how the coordination states of a system evolve over time, as observed through special quantities called collective variables. These collective variables typically span the interaction of organism and environment. Imagine a machine whose behavior is based on the very equations that are supposed to govern human coordination. Then imagine a human interacting with such a machine whereby the human can modify the behavior of the machine and the machine can modify the behavior of the human.

In a groundbreaking study published in the June 3 issue of PLoS One and titled “Virtual Partner Interaction (VPI): exploring novel behaviors via coordination dynamics,” an interdisciplinary group of scientists in the CCSBS created VPI, a hybrid system of a human interacting with a machine. These scientists placed the equations of human coordination dynamics into the machine and studied real-time interactions between the human and virtual partners. Their findings open up the possibility of exploring and understanding a wide variety of interactions between minds and machines. VPI may be the first step toward establishing a much friendlier union of man and machine, and perhaps even creating a different kind of machine altogether.

“With VPI, a human and a ‘virtual partner’ are reciprocally coupled in real-time,” said Dr. J. A. Scott Kelso, the Glenwood and Martha Creech Eminent Scholar in Science at FAU and the lead author of the study. “The human acquires information about his partner’s behavior through perception, and the virtual partner continuously detects the human’s behavior through the input of sensors. Our approach is analogous to the dynamic clamp used to study the dynamics of interactions between neurons, but now scaled up to the level of behaving humans.”

In this first ever study of VPI, machine and human behaviors were chosen to be quite simple. Both partners were tasked to coordinate finger movements with one another. The human executed the task with the intention of performing in-phase coordination with the machine, thereby trying to synchronize his/her flexion and extension movements with those of the virtual partner’s. The machine, on the other hand, executed the task with the competing goal of performing anti-phase coordination with the human, thereby trying to extend its finger when the human flexed and vice versa. Pitting machine against human through opposing task demands was a way the scientists chose to enhance the formation of emergent behavior, and also allowed them to examine each partner’s individual contribution to the coupled behavior. An intriguing outcome of the experiments was that human subjects ascribed intentions to the machine, reporting that it was “messing” with them.

“The symmetry between the human and the machine, and the fact that they carry the same laws of coordination dynamics, is a key to this novel scientific framework,” said co-author Dr. Gonzalo de Guzman, a physicist and research associate professor at the FAU center. “The design of the virtual partner mirrors the equations of motion of the human neurobehavioral system. The laws obtained from accumulated studies describe how the parts of the human body and brain self-organize, and address the issue of self-reference, a condition leading to complexity.”

One ready application of VPI is the study of the dynamics of complex brain processes such as those involved in social behavior. The extended parameter range opens up the possibility of systematically driving functional process of the brain (neuromarkers) to better understand their roles. The scientists in this study anticipate that just as many human skills are acquired by observing other human beings; human and machine will learn novel patterns of behavior by interacting with each other.

“Interactions with ever proliferating technological devices often place high skill demands on users who have little time to develop these skills,” said Kelso. “The opportunity presented through VPI is that equally useful and informative new behaviors may be uncovered despite the built-in asymmetry of the human-machine interaction.”

While stable and intermittent coordination behaviors emerged that had previously been observed in ordinary human social interactions, the scientists also discovered novel behaviors or strategies that have never previously been observed in human social behavior. The emergence of such novel behaviors demonstrates the scientific potential of the VPI human-machine framework.

Modifying the dynamics of the virtual partner with the purpose of inducing a desired human behavior, such as learning a new skill or as a tool for therapy and rehabilitation, are among several applications of VPI.

“The integration of complexity in to the behavioral and neural sciences has just begun,” said Dr. Emmanuelle Tognoli, research assistant professor in FAU’s CCSBS and co-author of the study. “VPI is a move away from simple protocols in which systems are ‘poked’ by virtue of ‘stimuli’ to understanding more complex, reciprocally connected systems where meaningful interactions occur.”

Research for this study was supported by the National Science Foundation program “Human and Social Dynamics,” the National Institute of Mental Health’s “Innovations Award,” “Basic and Translational Research Opportunities in the Social Neuroscience of Mental Health,” and the Office of Naval Research Code 30. Kelso’s research is also supported by the Pierre de Fermat Chaire d’Excellence and Tognoli’s research is supported by the Davimos Family Endowment for Excellence in Science.

Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>