Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist Begins to Unravel What Makes Pandemic H1N1 Tick

18.11.2009
As the number of deaths related to the pandemic H1N1 virus, commonly known as “swine flu,” continues to rise, researchers have been scrambling to decipher its inner workings and explain why the incidence is lower than expected in older adults.

In a study available online and appearing in a future issue of Proceedings of the National Academy of Sciences, a UT Southwestern Medical Center researcher and his collaborators in California show that the molecular makeup of the current H1N1 flu strain is strikingly different from previous H1N1 strains as well as the normal seasonal flu, especially in structural parts of the virus normally recognized by the immune system.

Prior research has shown that an individual’s immune system is triggered to fight off pathogens such as influenza when specific components of the immune system – namely antibodies, B-cells and T cells – recognize parts of a virus known as epitopes. An individual’s ability to recognize those epitopes – spurred by past infections or vaccinations – helps prevent future infections. The challenge is that these epitopes vary among flu strains.

“We hypothesize that older people are somewhat protected because the epitopes present in flu strains before 1957 may be similar to those found in the current H1N1 strain, or at least similar enough that the immune system of the previously infected person recognizes the pathogen and knows to attack,” said Dr. Richard Scheuermann, professor of pathology and clinical sciences at UT Southwestern and a co-author of the paper. “Those born more recently have virtually no pre-existing immunity to this pandemic H1N1 strain because they have never been exposed to anything like it.”

Between April and mid-October, the current H1N1 virus sickened roughly 22 million Americans and contributed to or caused about 4,000 deaths, according to the figures recently released by the Centers for Disease Control and Prevention. The deaths included 540 children. The CDC report also estimates the total number of hospitalizations at around 98,000 nationwide, with children accounting for 36,000 of the total.

For this study, researchers examined whether epitopes present in the seasonal flu strains between 1988 and 2008 also are found in the existing H1N1 strain. They used data catalogued in the Immune Epitope Database as well as information from the National Center for Biotechnology Information (NCBI) and the Global Initiative on Sharing Avian Influenza Data’s (GISAID) influenza genetic sequence databases. Dr. Scheuermann said his team also analyzed the virus’ genetic data using the NIH-sponsored Influenza Research Database (www.fludb.org), which he oversees at UT Southwestern.

The researchers found major genetic differences between the pandemic H1N1 strain and seasonal strains, potentially explaining why children and young adults are more susceptible to the H1N1 strain now circulating worldwide.

“Normally, older adults are generally more susceptible to pathogens like influenza, however, for the pandemic H1N1 strain this does not seem to be the case,” said Dr. Scheuermann, who is also a member of the Cancer Immunobiology Center at UT Southwestern. “The antibody epitopes, which provide protection against disease, for the pandemic H1N1 strain are virtually all different from those present in recent seasonal strains, so young people have no built-in protective mechanisms. We speculate that older adults may have been exposed to viruses in their youth in which the epitopes are more similar.”

At this point, he said, scientists must continue to be vigilant about tracking the pandemic H1N1 strain as it continues to evolve.

“H1N1 has not mutated in such a way as to make people sicker, but it could happen,” Dr. Scheuermann said. “It is important that individuals follow the public health guidelines regarding vaccination as the H1N1 vaccine becomes more widely available.”

The Centers for Disease Control and Prevention (CDC) recommendations include: pregnant women, individuals in contact with and caregivers of children younger than 6 months of age, health care and emergency medical services personnel, all individuals from 6 months through 24 years of age, and individuals aged 25-64 with health conditions associated with higher risk of medical complications from influenza.

Researchers from the La Jolla Institute for Allergy & Immunology in La Jolla, Calif., and the University of California San Diego also contributed to the work.

The study was funded by the National Institutes of Health.

Visit www.utsouthwestern.org/infectiousdiseases to learn more about UT Southwestern’s clinical services for infectious diseases.

Kristen Holland Shear | Newswise Science News
Further information:
http://www.utsouthwestern.org/infectiousdiseases

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>