Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientific Literature Review Finds Opportunities for More Research on Solar Energy Development and Impacts to Wildlife

12.12.2011
More peer-reviewed scientific studies of the effects on wildlife of large-scale solar energy developments and operations are needed to adequately assess their impact, especially in the desert Southwest, according to a scientific literature review conducted by the U.S. Geological Survey and published in the journal BioScience.

In their literature review, the authors of the paper, USGS scientist Jeffrey Lovich and Maryville College scientist Joshua Ennen, found that out of all the scientific papers they examined, going back well before the 1980s, only one peer-reviewed study addressed the direct impacts of large-scale solar energy development and operations on any kind of wildlife. Peer-reviewed studies are those that have been reviewed by experts in the same field of study and are then published in scientific journals.

One reason why there are few peer-reviewed studies is that the interest in developing alternative energy has grown exponentially in recent years and science has to “catch up.” Opportunities for hypothesis-driven research on solar energy facilities of this scale, particularly research looking at baseline conditions before development, impacts of operation, or conditions after development, have been limited.

The authors pointed out that a great deal of information exists in environmental compliance documents and other unpublished, non-peer-reviewed literature sources, but that more peer-reviewed studies are greatly needed.

"The dearth of peer-reviewed studies, as shown by the USGS review, can happen whenever society rapidly embarks on major undertakings, such as developing large-scale solar projects," explained USGS director Marcia McNutt. "Our goal is to raise the visibility and accessibility of information of impacts of solar energy impacts on wildlife as these important projects move forward."

According to Lovich and Ennen, these studies are particularly important in sensitive habitats such as the desert Southwest with its wildlife diversity and fragile arid desert lands. "For example," said Lovich, "the desert tortoise is an ecological engineer whose burrows provide much-needed shelter for many other desert species. Yet large areas of habitat occupied by Agassiz's desert tortoise and some other at-risk species have potential for large-scale solar-energy developments."

The review paper findings can help the Bureau of Land Management and other agencies charged with solar siting, development, and operational responsibilities to identify, prioritize, and resolve information gaps relative to development and operational impacts to wildlife, and direct monitoring efforts.

The paper does not contain any new scientific findings; rather, it examined peer-reviewed, already published articles. This is a common way to assess the state of published knowledge on a topic, identify information and research gaps, and focus future projects.

The paper, Wildlife conservation and solar energy development in the desert Southwest, is authored by Jeffrey E. Lovich and Joshua R. Ennen.

Catherine Puckett | EurekAlert!
Further information:
http://www.usgs.gov

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>